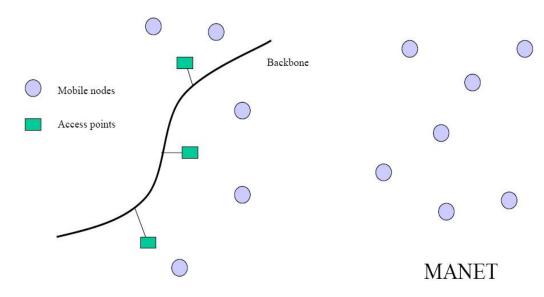


Mobility and MANET Intelligent Transportation Systems

Rolland Vida

Overview

- MANET Mobile Ad Hoc Networks
- Meaning of "Ad Hoc"
 - Immediate, provisional, without preparation
 - Ad Hoc Committee = a provisional committee, with a task that is different from the usual operation of the organization



Ad hoc networks

No available infrastructure

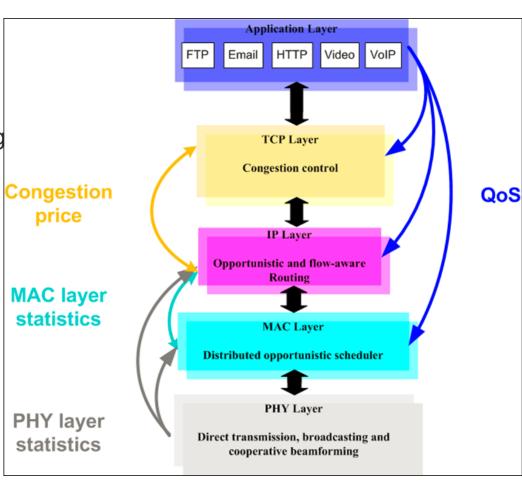
- No internet connections, gateways, access points
- No dedicated, deployed servers (AAA, DHCP, etc.), or services
- No addressing based on IP subnets
 - A problem for "classical" routing protocols
- No reliable (stable) network devices
 - Services provided by neighbors, fellow peer nodes
 - The status of my neighbor can change at any time depleted battery, increased distance, etc.
 - I do not know my neighbors, I do not know if I can trust them
- Self-organization
 - Peer-to-peer paradigm (on the networking layer)
- Multihop
 - Communication (routing) over several hops (devices)

Intelligent Transportation Systems

Wireless Mobile Network

MANET research topics

- Physical layer -> "mobility models"
 - Energy-efficient operation adjusting radio power, sleep scheduling
 - Mobility-aware radio technologies


Data-link layer

MAC (shared medium access, efficiency, decreasing the chance of collisions)

Networking layer

- Routing (dynamically changing topology, prefix-based routing not working)
- Upper layers
 - Packet retransmissions, TCP (packet loss, unreliable transmission medium)
 - Security (can be extended to any of the layers)
- Cross-layer optimization
 - The parallel optimization of several layers in the ISO/OSI model
 - Each layer might have its own influence over mobility

Intelligent Transportation Systems

Mobility types

- Nomadic mobility (nomadicity)
 - No communication while moving device turned off
 - When restarting, new IP address, rebuilding the interrupted connections
- Slow mobility
 - E.g., people walking around in a building
 - University campus students walking, biking
- Fast mobility
 - Cars, bikes, ...
- Moving networks...

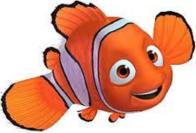
MANET vs. MONET

Edouard MANET

Mobile Ad Hoc Network

Claude MONET

Moving Networks


- Networking devices moving together
 - E.g., passengers in a train, metro, bus, airplane
- Alternative name
 - Networks in Motion NEMO

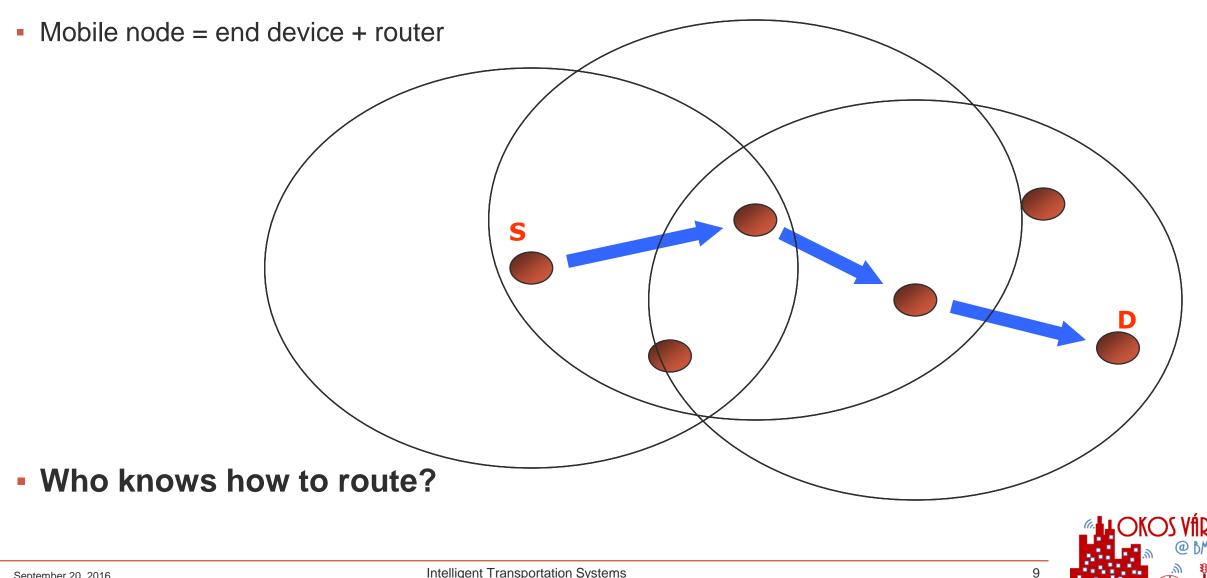
NEMO – Networks in Motion

- Many MNs moving together
 - If they move together, let's handle their mobility together
- MR (mobile router) default gateway
 - Provides the connection between NEMO-members and the outside world
 - Dedicated device, or one among the others assuming this role (periodic role changes)
 - Usually the biggest battery, the largest bandwidth, etc.
- The MNs have to register at the MR
 - They belong to the subnetwork of the MR
 - "Fixed" nodes in the network (relatively to the MR), their relative position does not change
 - Called also Fixed Local Nodes (FLN) because of that

NEMO efficiency depends on the environment

• (Possible) drawbacks:

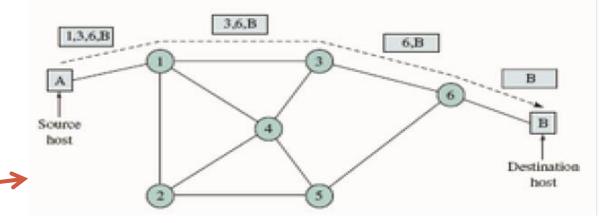
- Case of 100 MNs with 3G/4G mobile internet access in a city
- If the MNs do not join the NEMO
 - personal mobility management needed for all the 100 MNs
 - + Any one of them receives the bandwidth provided by the given technology
- If all the MNs join the same NEMO
 - The MR link capacity becomes a bottleneck
 - In the worst case, the MNs receive only 1/100 of the bandwidth provided in the previous case

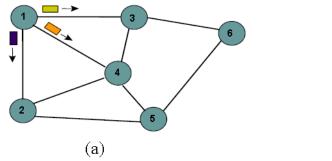

• (Possible) advantage:

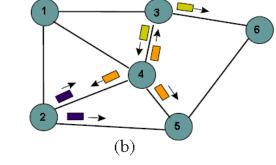
- If 100 MNs on an airplane want to connect to the internet
 - The dedicated MR is the only node being able to connect
- Mobility management is optimal
 - Only the mobility of the MR has to be handled

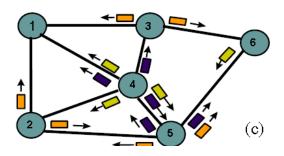
MANET routing

Point-to-point

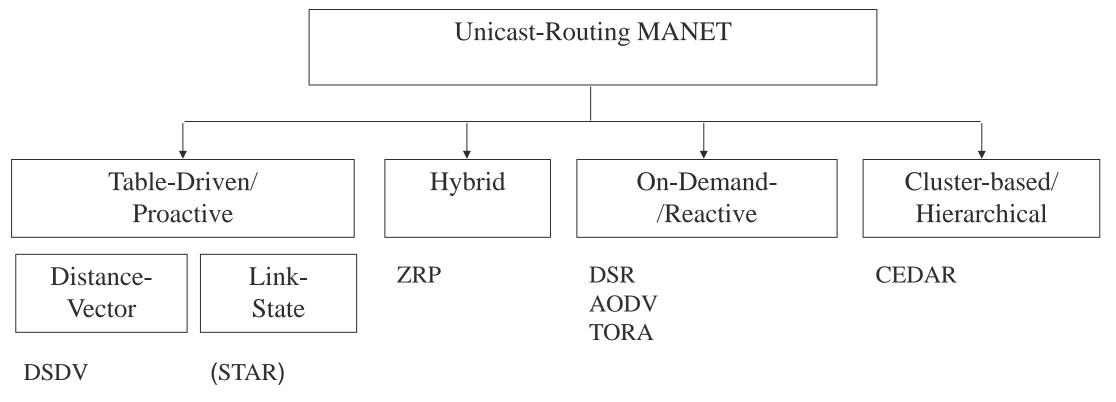

"


Where to send the packet?


- Sometimes only the source knows
 - All the route is stored in the header
 - Packet is routed based on the header
 - Source routing, as the entire route is decided by the source
 - PI.: Dynamic Source Routing (DSR)
 - Header can grow large
 - Fragmentation, low efficiency
 - Especially if long routes and not much data


Sometimes nobody knows

- Flooding solutions
 - Everyone rebroadcasts the received packet
 - Hopefully it will reach the destination
- High burden on the wireless network, where resources are limited


Intelligent Transportation Systems

About routing in general

- Many routing protocols were developed
 - Some specific to MANETs
 - Some others adapted from the wired networks
- There is no one-size-fits-all protocol, which performs well in all circumstances
- Desired features for a MANET routing protocol
 - Distributed operation
 - Loop-free
 - Operation on demand
 - Security
 - Support for "sleeping" cycles
 - Support for one-directional links

MANET (routing) protocols

MANET: Mobile Ad hoc Network

(IETF working group)

MANET routing

Proactive routing

- The routing table is continuously maintained
 - No matter if there is traffic or not
- Relatively stable networks
- DSDV based on the Bellman-Ford algorithm

On demand, reactive routing

- Builds a route only if needed, if a packet has to be sent to the destination
- The routes are temporary, are dismantled if not used
- AODV

Hybrid protocols

- Combining the previous two
- Position-based protocols
 - Makes use of geographical position information for routing

Constraints

- Delay
 - Proactive protocols provide lower delay, as routes are prepared in advance, and always up to date, ready to use
 - Reactive protocols provide large delay, as the route from A to B has to be found, when needed
- Overhead
 - Proactive protocols have a large overhead, too much signaling traffic to build and maintain the routes, even if no real data to send
 - Reactive protocols have lower overhead, useless routes are not maintained
- Each application will choose the best protocol
 - Low mobility -> Proactive protocols
 - High mobility -> Reactive protocols

