MANAGEMENT OF INFORMATION SYSTEMS

BME VIK TMIT Software Engineering, BSC

MANAGEMENT OF INFORMATION SYSTEMS

4. SERVERS, DESKTOPS

Part I

SERVERS

ELEMENTS OF THE INFRASTRUCTURE

- User terminals
 - Desktop Computer
 - Personal Computer
 - PDA, smartphone, etc.
- Server
- Network (operational and maintenance)
- Storage
- The user terminals, the servers, and their network are complex, computer systems, constituting several units: Information systems

TYPICAL PRODUCT FAMILIES

- Most typically a computer vendor has 3 different product families:
 - home,
 - business,
 - server

HOME PRODUCT FAMILY

- Characteristics of a home product family:
 - absolute cheapest starting price
 - expensive upgrades, accessories
 - characteristics are given in general terms
 - e.g.: video resolution rather than video card type
 - suppliers are changed frequently, so the are not "two same"
 - flexible "game features": joystick, high performance graphic, audio

BUSINESS PRODUCT FAMILY

- Characteristics of a business product family:
 - Minimizing the whole "life-cost" (more expensive start price, but longer lifetime)
 - Less frequent changes:
 - Changes are expensive:
 - to store spare parts to a lot of (sub)types
 - to train the support/sales personal

SERVER PRODUCT FAMILY

- Characteristics of a server product family:
 - Different architecture (to have "longer life": lot of free capacity, easy-to-upgrade, easy-to-expand)
 - Minimal cost comparing to performance
 - Easy to maintain, robust, minimal maintenance time
 - Location of connections, controllers, buttons:
 - Front and rear, but not at the sides
 - Reliability is the key design option

HARDWARE CHARACTERISTICS OF

SERVERS

- More internal space for (future) extensions:
 - for cards, CPU-s, drives, etc.
- Larger CPU performance: more CPUs or one very fast and powerful CPU (but frequently I/O bound!)
- High performance I/O: typically servers perform much more I/O activities than the clients (prop. to # of clients)
 - Fast I/O subsystem,
 - Fast internal buses,
 - Fast network interfaces,
 - RAID technology
- More upgrade options
 - designed for growth easy to add/replace CPU, memory...
- Rack mountable design
- No side-access needs (connectors only at front and rear)

SERVERS - DEFINITION

- Server: in computer science & information systems terminology a server is a (typically heavy duty) computer or software that provides access to
 - stored or provided *data* for other devices,
 - hardware resources (e.g. printer, back-up storages, processors)
 - different services.

Server Appliances

- A Server Appliance is a device that is suitable for one, dedicated service
- E.g.:
 - File server
 - Web-server
 - (E-)mail server
 - DNS server

CLASSIFICATION OF SERVERS

- According to functionality, e.g.
 - Web-servers,
 - FTP-servers,
 - Database-servers
- According to the served area, e.g.
 - Internet servers,
 - Intranet servers;
- According to power, capacity

SERVERS


MIT https://WWW.TMIT.BME.HU/VITMAC02

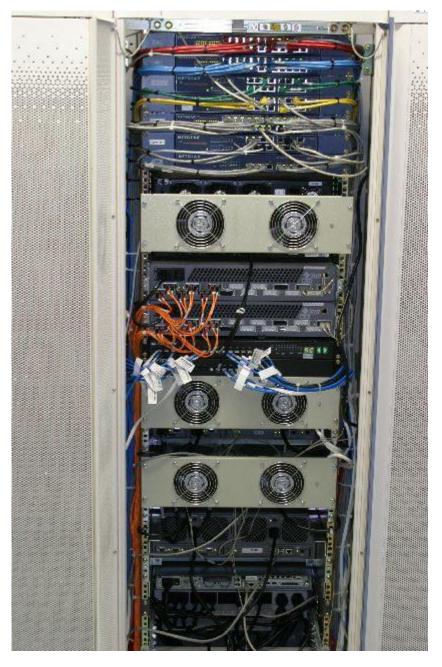
SERVER RACKS

- Rackmount servers
 - RU (rack unit) or U
 - 1.75 inch high
 - 19 (or 23) inches wide
 - Servers typically 2U or 4U
 - For virtualization the larger performance required
 -> larger space
 - Full-rack (Full-wide) / Half-rack (Half-wide) servers

1U, 2U, 4U SERVERS

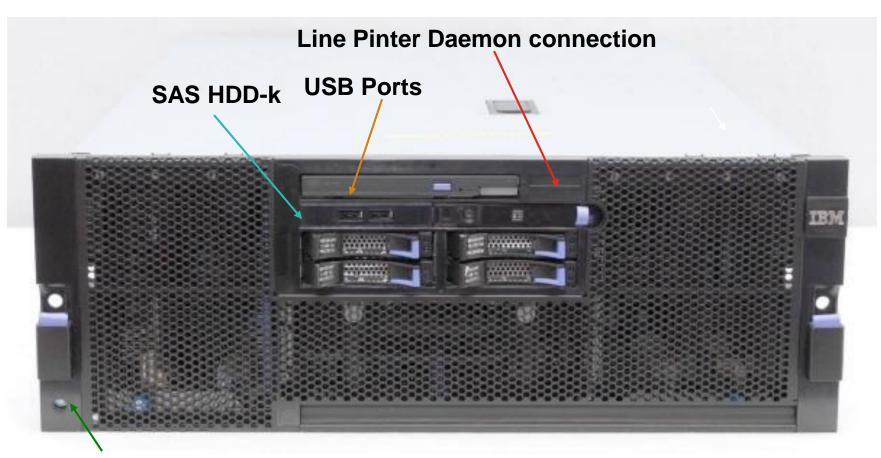
https://WWW.TMIT.BME.HU/VITMAC02

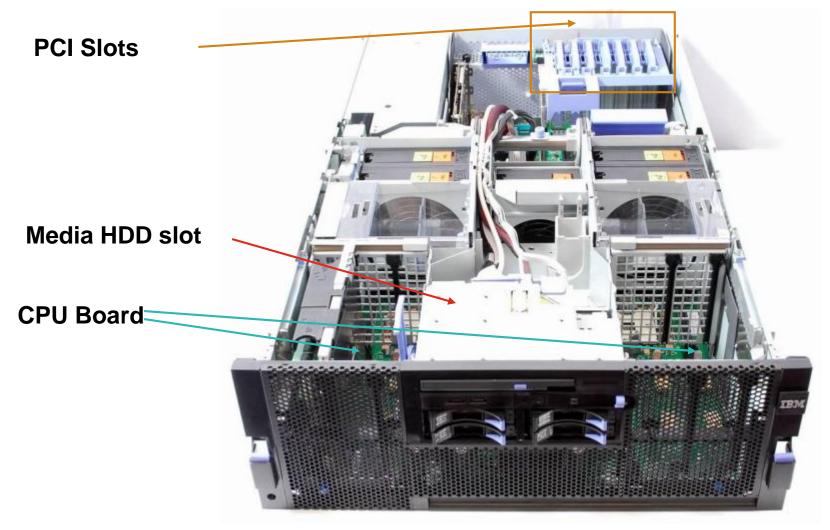
Server rack front

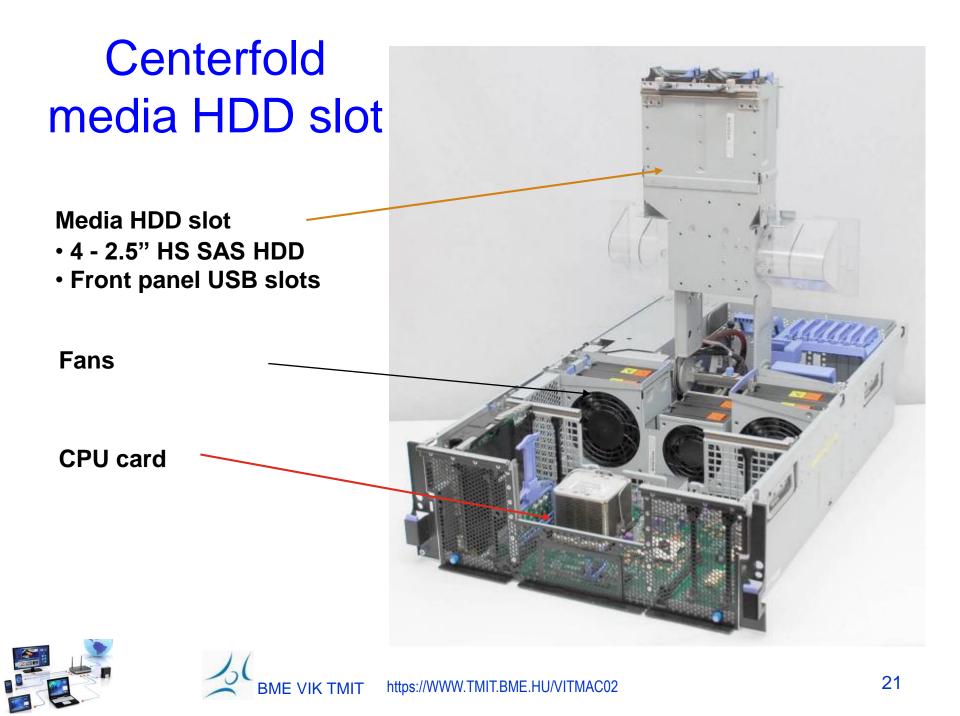


MIT https://WWW.TMIT.BME.HU/VITMAC02


Server rack rear


MIT https://WWW.TMIT.BME.HU/VITMAC02

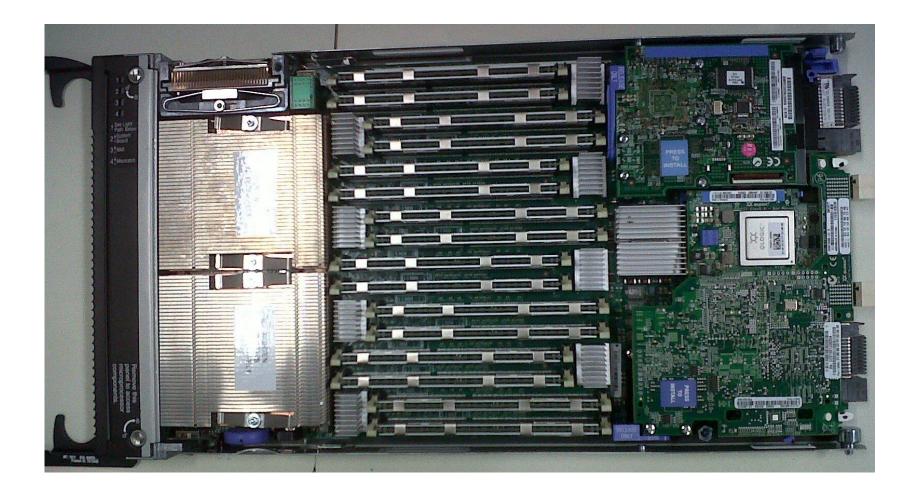

Main switch


TMIT https://WWW.TMIT.BME.HU/VITMAC02

INTERNAL VIEW

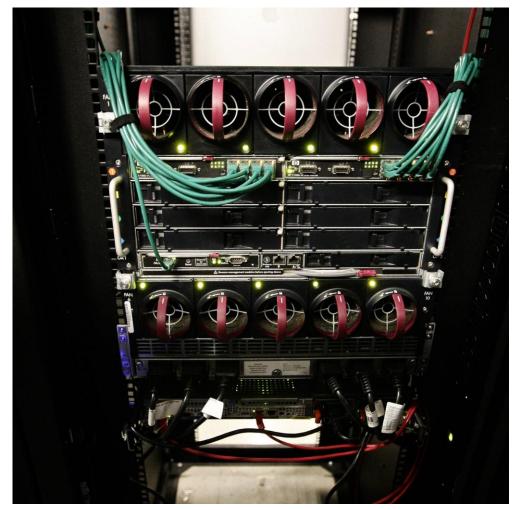
MEMORY CARD

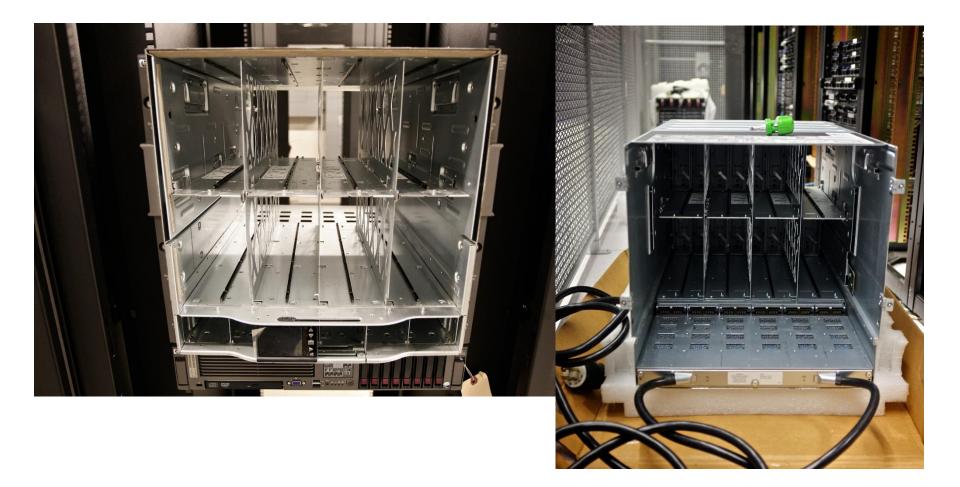
- Stripped-down computer
- Optimized for minimal energy consumption
- Use the space in a data center as efficiently as possible
 - Server density can be ~6 times higher
- How can it be achieved?
 - Only the core components
 - CPU, memory, integrated NW controller
 - Optionally Fiber Channel Host Bus Adaptor (HBA)
 - Rest --???



BLADE CHASSIS

- Blade server cannot be used on its own
 - -> blade chassis
- Consolidation of
 - Power supply
 - But: more power cords (high power requirements)
 - Cooling
 - Disks (in blades no or even just a few -> SAN)
 - Bootable from SAN (Storage Area Network dedicated network for fast data access – see later)
 - Network connectivity
 - User interface ports
 - Keyboard, video, mouse, DVD


BLADE SERVER CHASSIS - FRONT


BLADE SERVER CHASSIS - REAR

TMIT https://WWW.TMIT.BME.HU/VITMAC02

BLADE SERVER CHASSIS – EMPTY

BLADE SERVER CHASSIS - MIDPLANE

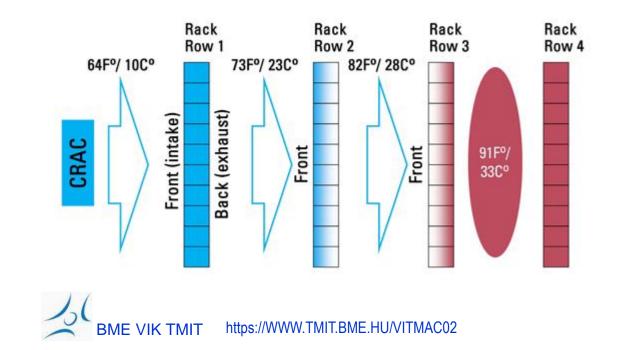
- Redundant interconnections among blades
- Switch
- Media IF
- Management (load sharing)
- Redundant power distribution

Half-wide and full-wide blades

BLADE SERVER – TERMINOLOGY

- Server blade
 - One server
- Blade server
 - Synonym of Server blade
 - Chassis with server blades
 - Blade (Server) System

- Why to use them?
 - Smaller space (~ 1/6 1/10)
 - Smaller room
 - Fewer racks
 - Shorter cables (up to 85% reduction)
 - Smaller power consumption (25-50%)
 - -> Reduced cooling costs
 - But...
 - Large computation power
 - High processor/core density


- But...
 - Price
 - A blade server is cheaper, but the chassis is expensive
 - It worths if it is full (14-16 or more)
 - Not good for small companies
 - Chassis is not standardized
 - Only one company
 - Or even only one type (!)


- Cooling

- Though less power (heat), but power/heat density is high
- More efficient, special cooling system
- Traditional case:

HOT ROW / COLD ROW LAYOUT

- Fronts of the server(rack)s face each other
- Raising the floor ~50cm

HOT ROW / COLD ROW LAYOUT

MIT https://WWW.TMIT.BME.HU/VITMAC02

BLADE SERVERS

- Memory
 - Smaller than in 'regular' servers, but in nowaday's models acceptable
 - But not extendable, because of lack of space
- Disks
 - Typically no or very limited disk space
 - 1-2 disks
 - Mainly for the operating system, not to store (large amount of) data
 - Disk/Storage modules in chassis
 - Consumes (lot of) space
 - Often it is still not enough
 - SAN Fibre Channel cards
 - Typically do not support hot-swappable disks
- When is it a big problem???

ADVANTAGES

- More computation power on less space
- Management
 - Failover/load balancing
 - designed for this
 - Self-diagnosis replace
- Easy set-up
 - Just plug-in into the chassis
 - Power, network, cabling already in chassis
 - You do not have to connect each server separately to power, net (Ethernet, SAN, management NW), display, keyboard, mouse

DISADVANTAGES

- Special climate control
- Costs
 - Server + chassis
 - Not well scalable
 - Special initial configuration, special training, special administration
 - Not compatible, vendor-specific solutions
 - Vendor lock
- Devaluation

chassis

- Cannot be upgraded
- Not standardised, not compatible new server with old

WHAT CAN THEY BE USED FOR?

- Tasks for high computing but less storage requirements
 - E-mail, web servers
 - SSL encrypting of Web communication
 - Infrastructure applications such as DNS
 - Streaming audio and video content
 - Database control
 - Virtualization, virtual machines memory!!!
 - Distributed computing
- Server clusters
 - See later in Data Centers chapter

HOMOGENEOUS / HETEROGENEOUS SYSTEMS

- Servers can be
 - Homogeneous (from same vendor/from same type, family)
 - Heterogeneous (from more, different vendors/from different product families).
- Advantages of homogeneous systems:
 - Easier education
 - Easier maintenance
 - Easier repairing (one set of spares)
- Advantages of heterogeneous systems :
 - Can not stuck when something happens (bankrupt) to the vendor
 - Most appropriate equipment can be chosen for all tasks
 - Competition between vendors result in smaller price

RELIABILITY OF SERVERS

- More users depend on them reliability is the key
- Minimal repairing time
 - Different architecture "longer life"
 - Free capacity
 - Duplications
- Maintenance agreement
- Disk backup
- Location in a safe place (data center)

LOCATION OF SERVERS

- Must be protected against
 - Damage by disaster
 - Electromagnetic influence
 - Damage caused by human
- Must be located in a safe place
 - UPS Uninterruptible Power Supply
 - HVAC heating, ventilating and air conditioning
 - Fire protection
 - Physical protection (physical harm, unauthorized access)

UNINTERRUPTIBLE POWER SUPPLY (UPS)

MIT https://WWW.TMIT.BME.HU/VITMAC02

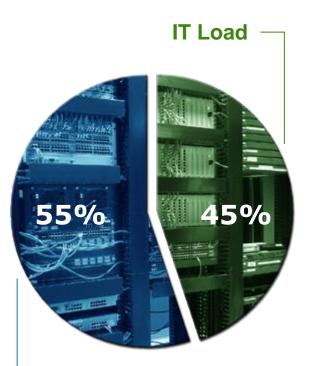
• Fire alarm sensor

https://WWW.TMIT.BME.HU/VITMAC02

Fire-safe door

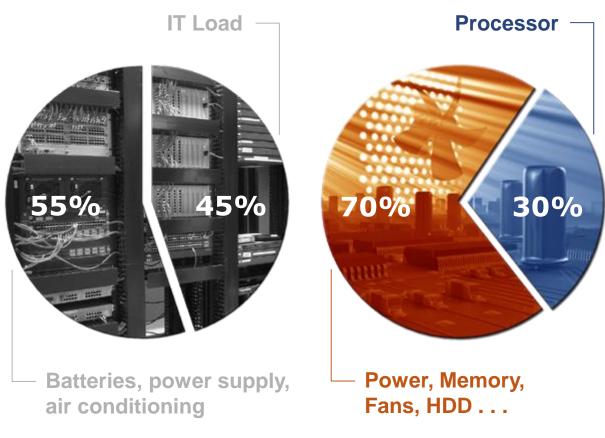
https://WWW.TMIT.BME.HU/VITMAC02

Air Conditioning is essential ③



• How large part of the energy do you think is used for useful CPU calculations?

Data Centre

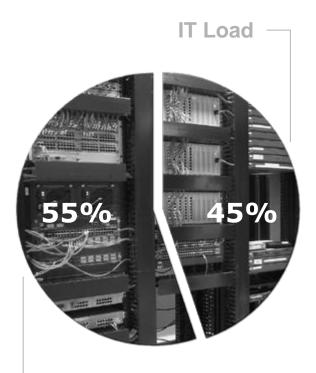

Batteries, power supply, air conditioning

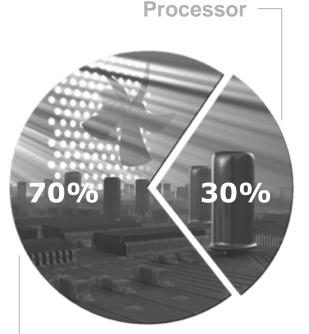
Data source: Creating Energy-Efficient Data Centres, , Department of Energy , Data Centre Facilities and Engineering Conference , May 18, 2007

BME VIK TMIT https://WWW.TMIT.BME.HU/VITMAC02

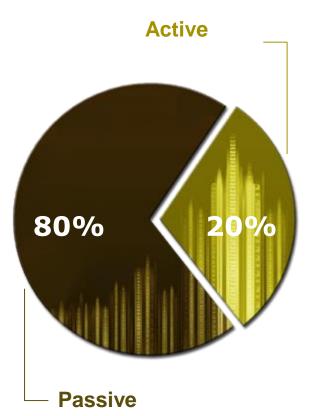
Data Centre

Server hardware

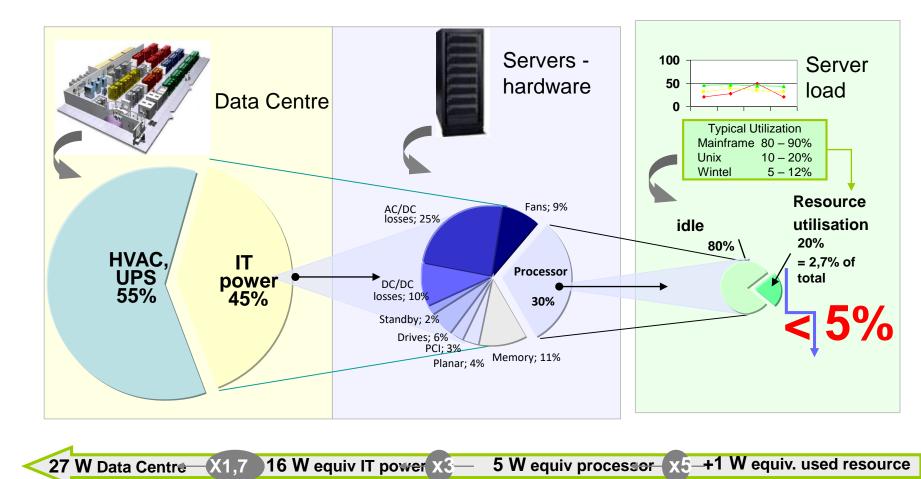



Data Centre

Server hardware


Server loads

Batteries, power supply, air conditioning


– Power, Memory, Fans, HDD . . .

REAL VIEW OF THE POWER CONSUMPTION OF A DATA CENTER

BME VIK TMIT https://www.Whan Brugen of March 2 formation Systems

DATA CENTERS

- Own site
- Server hotels
- Server service
- Outsourcing
 - Advantages
 - More economic, specific competence
 - Disadvantage
 - Vulnerability
- Later in details

FINAL LOCATION OF SERVERS

- Recommendable to locate the servers into final place *before* operating system, etc. is installed
- To the contrary :
 - machine remains in a labor for a certain period, where no UPS, HVAC, not safe – this itself may cause outage in service,
 - no protection, if the machine is in the lab, additional programs can be installed on them (even by unauthorized persons)
 - while it is moved to its final place FOR SURE out-ofservice!

DATA BACK-UP

- Theory:
 - Data stored on clients are not backed up. So it is advisable to users to store their data on server – that is backed up. So no need to backup the local data
- But:
 - especially in certain operating systems (Windows) a lot of personal settings, configuration files, downloaded programs are stored locally

DATA BACK-UP

- Data stored on servers are backed up
 - In case of failure to restore the data (to a not too old state)
 - Archivation
- Later on discussed in full details

OPERATING SYSTEMS

- The operating systems of the servers and desktops can be
 - Different
 - E.g.: in a case of a web-server the operating system of the server and the client may be different, only the communication protocol must be the same
 - Same (exactly, or same operating system with different settings)
 - UNIX CPU server

SPECIAL ADMINISTRATIVE NETWORK

- Servers need to be maintained remotely later in details
- Advisable to maintain a special, administrative network for back-ups and monitoring
- Back-ups require to carry very high amount of data over the network – highly reduce the bandwidth for users
- The special, administrative network: simpler, more faulttolerant elements
- Unaffected by the outages of the "regular" network
 - Monitoring system less likely product false errors when there is a network problem
 - A tool for the system administrators to reach the machines during such outages

REMOTE ADMINISTRATION ACCESS

- In old days: Separate keyboard + monitor to every server
- Now: console server
- Advantage:
 - Save space
 - All the tasks can be done remotely
 - Not in the air-conditioned/protected data center
- Remotely controlled power supplies

REDUNDANCY

- Disk storage redundancy (RAID) later
- Redundancy of components
- Redundant power supply
- Hot-swap components

FULL AND N+1 REDUNDANCY

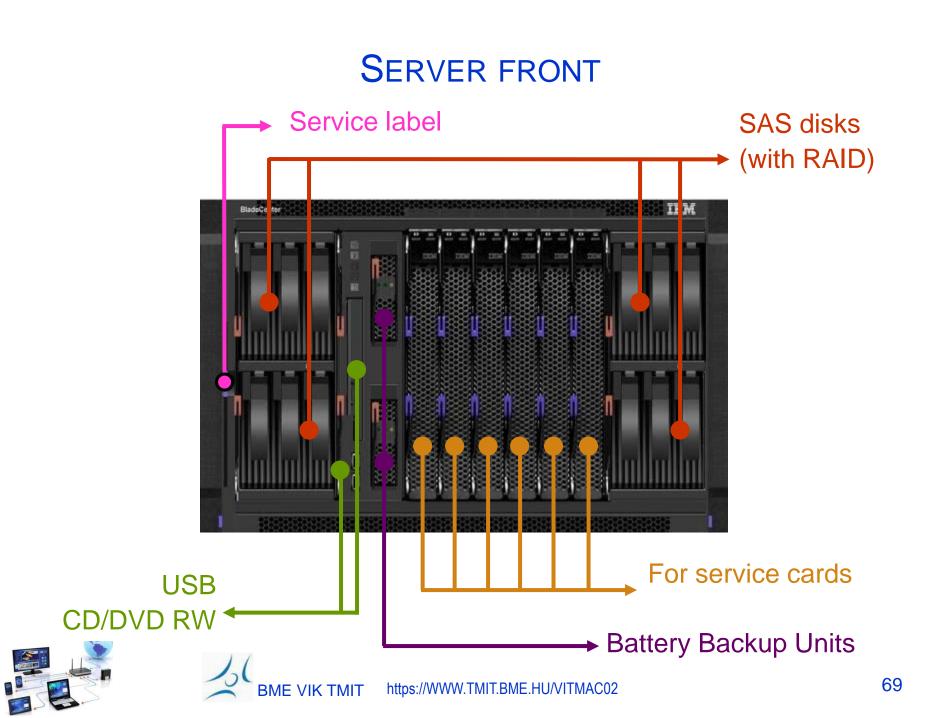
- n+1 redundancy: one of any particular component can fail, yet the system is still functional.
- Full redundancy: two complete sets of hardware are set up, and some kind of "fail-over" is configured
 - One system works other idle till failure
 - Switch over: manual or automatic
 - Cold-swap
 - Hot-swap
 - Load sharing both systems work with half of the total load, but both have enough capacity to cope with the whole load
- In case of n>2: n+1 redundancy is cheaper than full
- Often not the whole system is n+1 redundant, only the main parts

HOT-SWAP COMPONENTS

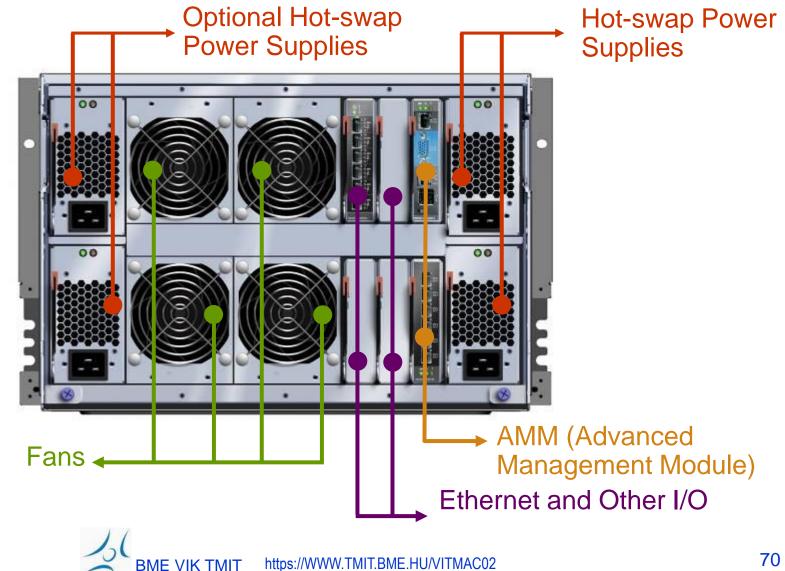
- Normally: parts can be removed and replaced only when the system is powered off
- Hot-swap: ability to remove and replace a component while the system is running
 - but often the replacement can be delayed till the next scheduled maintenance period
 - risk of double failure

HOT-SWAP PROBLEMS

- Which parts are not hot-swappable?
 - Some network devices have hot-swappable IF cards, but the CPU is not
- How and how long is service interrupted during the switch over?
- How long can the system operate or only with degraded capacity?
 - e.g.: hot-swapped disk, while data content re-building on the new
- The device is hot-swappable, but upgrading requires reset
- So hot-swap parts do not eliminates the outages, they just reduce the (risk/duration of) outage



EXAMPLES FOR REDUNDANCY


- Reliability
 - Disks
 - Redundant power supply
 - Redundant cooling
 - All I/O connections redundant
 - Doubled switching modules
 - Redundant buses, disk connectors
 - Doubled management modules
- Availability
 - Management system monitors the components
 - Predictive Failure Analysis
 - Error logs

REDUNDANT POWER SUPPLY

- Power Supply: next to HDDs the next most failure-prone component
- Does not simply mean that 2 such devices
 - Means that the system can be operational if one power supply is not functioning (n+1 redundancy)
- Each power supply should have more separate power cords
 - Loose connection
 - Relocation is possible
 - Reliability: each cord from different power supply

SERVER REAR

MAINTENANCE CONTRACTS

- When purchasing a server, must also be considered how maintenance will be handled
- Vendors tend to have a variety of maintenance contract options
 - -4 hours,
 - 12 hours,
 - 1 day response contract,
 - Only provision of spare parts
 - replaced when spare parts get used

MAINTENANCE CONTRACTS - EXAMPLES

- Low/medium critical host: 1-2 day response time or no special contract at all
- Large groups of similar hosts: typically spare kits and the repairs can be done by local staff
- Controlled model selection: Goal to have just two different models
- Critical host: too expensive to have fully stocked spare kits. Stock only spares for parts that commonly fail (disk, power supply – interchangeable typically) + same day response maintenance contract
- Large variety of models from same vendor:
 - Very large number of hosts: on-site technician
 - Medium size: spares kits on the spot + technician nearby
 - Direct access to spare kits on an emergency basis
- Highly critical host: on-site technician + duplicate machine ready to be swapped into place (typically as expensive as a redundant server, but better option for non-technical companies)

STOCKING SPARES – SERVICE CONTRACT

- Trade off between stocking spares (1) service contract (2)
 - (1) Too expensive for a small site
 - (2) Typically includes diagnostic services even if over the phone
- Sometimes the easiest way to diagnose swap in spare parts until the problem goes away. But its local management (training technicians, stocking spares) can be complicated, if
 - Small, medium site companies
 - Non-technical companies
 - Wide variety of models used

CONCLUDE A MAINTENANCE CONTRACT

- Sometimes it is discovered that a critical host is not on the service contract at a critical time
- To prevent a host being missed from a maintenance contract:
 - Good inventory program
 - Have the person responsible for purchasing machines to be the person responsible for maintenance contracts
 - Maintenance contracts also for the (~ 1 year) warranty period with "zero dollar charge"

Part II

PERSONAL TERMINALS HOME PROCESSING

DESKTOPS

- Desktop
 - Definition, characteristics
- Desktop Management
 - Tasks of Desktop Management

DESKTOPS / PERSONAL COMPUTERS

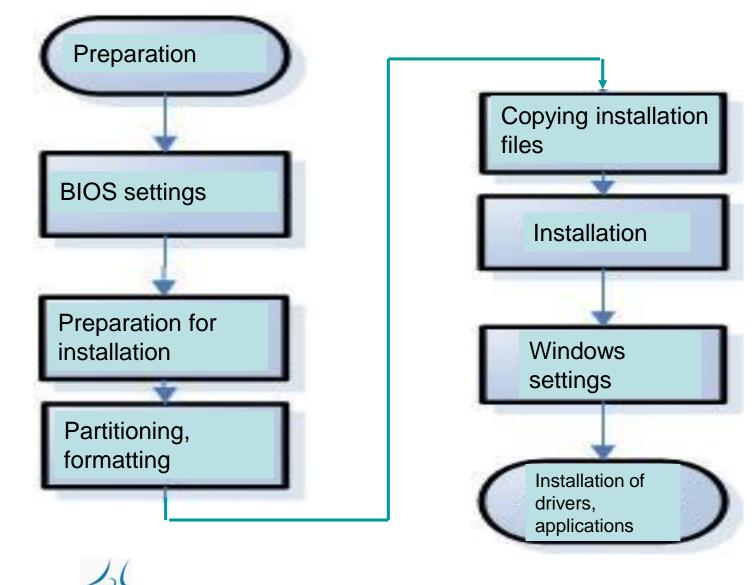
- Desktop
- Personal Computer (PC)
- Newer solutions
 - Dockers (for laptop)
 - Personal Digital Assistants (PDA)
 - Smartphone
- Personal terminals, Personal machines

PDA

First PDA (AT&T EO440) 1993

TMIT https://WWW.TMIT.BME.HU/VITMAC02

SMARTPHONE



TABLET

OVERVIEW

INSTALLATION

- Regional and language options
- Type in the user name/enterprise name
- Product identification key
- Computer name
- Administrator password
- Date, time, time zone
- Network settings
- Workgroup
- Display resolution detection

INSTALLATION OF DRIVERS, PROGRAMS

- 1. To be able to use the hardware drivers must be installed
 - Provided by the manufacturers of the functional units
 - Most important: voice, video, network cards
- 2. For protection:
 - Anti-virus
 - Anti-spyware
 - Firewall
- What is a firewall?
 - In computer technology: Hardware and/or software protection against unauthorized electronic access to a networked computer system

INSTALLATION OF DRIVERS, PROGRAMS

- ✓ After installing anti-virus, anti-spyware and firewall:
- 1. Internet connection may be established
- 2. Upgrade the protection software and operating system
- 3. Network settings
 - IP address
 - Subnet mask
 - Gateway
 - DNS Server address, etc.
- 4. Install user programs

INSTALLATION OF DESKTOPS IN AN ENTERPRISE ENVIRONMENT

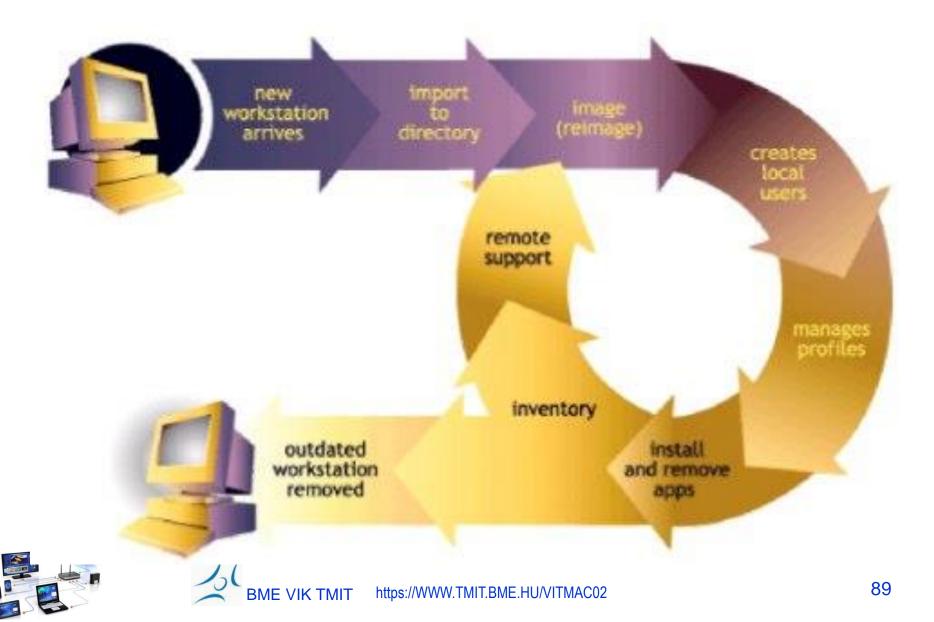
- Imagine the previous process on several hundred machines...
 - Slow
 - Boring
 - Error prone
- On the top of all that:
 - Different user groups
 - Different programs
 - Different user profiles
- Automation needed...

DESKTOPS – OPERATION SYSTEMS

- Mainly: Pre-installed operation system
 - Problem: cannot be known *exactly* what is installed, and the machines are different
 - Typically machines are purchased continuously, not all at a time
 - Machine must be replaced promptly
 - Purchase if the organisation is enlarged/re-organized
- Result: non-homogenous desktop and operation system set – source of errors!
- Not sure, if we can reach a homogenous desktop set if *we* install the machines

MANAGEMENT - AUTOMATION

- Advisable to automate not only the installation process, but also the management
- Attach to network
 - IP address, protocols, rights
- Access to services
 - printing, e-mailing, Internet access, etc.
- Other tasks
 - Mailbox management;
 - virus, spam, spyware protection;
 - access to remote storage, database


TASKS OF DESKTOP MANAGEMENT

- The management of the desktops covers several issues:
 - installation and upgrade of the operation systems and applications,
 - their back-up and archivation,
 - develop and maintain a universal user interface that is used all around the company,
 - inventory of machines
- Requirement:
 - Do it with as small human interaction as it can be
 - Automation as much as possible
 - more economical
 - reduces the harms caused by human's fault
- This whole process is called as **Desktop Management**

ME.HU/VITMAC02

LIFE CYCLE OF A PC, TYPICAL ACTIVITIES TO MANAGE

DESKTOP MANAGEMENT SERVICES

- Creating a system image, automatic installation
- Personalized software installation, automatic application supervision, measurement of software usage (statistics)
- Policy-based desktop supervision
- Remote supervision
- Full hardware and software inventory

DESKTOP MANAGEMENT SERVICES

- Creating a system image, automatic installation
- Personalized software installation, automatic application supervision, measurement of software usage (statistics)
- Policy-based desktop supervision
- Remote supervision
- Full hardware and software inventory

CREATING A SYSTEM IMAGE, & AUTOMATIC INSTALLATION

- Installation of new operating systems and applications on every/selected (connected or stand-by) computers of the company
 - from image-file
 - distribution of sample installation
- Assignments between "Application-objects" and desktops
 - Upgrades only in one place ("Application-object") and the users can see the new version immediately

CREATING A SYSTEM IMAGE, & AUTOMATIC INSTALLATION

- "Wake On LAN"-functionality
 - Switched off machines that are connected to network can be switched on by a network command
- Automatic distribution of applications
 - to more users at same time
 - in a personalized form
 - condition-based (e.g. if there is enough space)
 - system image distribution before system (re)starting the computer
 - automatized online application distribution function
 - during installation desktop can be used
 - Layered Agents
 - From a central site to one computer in other sites
 - From these local central machines to all other local desktops

DESKTOP MANAGEMENT SERVICES

- Creating a system image, automatic installation
- Personalized software installation, automatic application supervision, measurement of software usage (statistics)
- Policy-based desktop supervision
- Remote supervision
- Full hardware and software inventory

PERSONALIZED SOFTWARE INSTALLATION

- Tasks of personalized software installation:
 - Which applications can be accessed by a user
 - Look-out of the desktop (background, screensaver, etc.)
 - Who can have an access to the PC and with which rights
 - Which printers can be used
 - Where to turn in case of a problem

APPLICATION SUPERVISION FUNCTIONS

- System images stored in a central database
 - (Automatically) Self correcting applications
 - Unintentionally deleted, damaged files, settings can be restored
- Desktop assignment functions
 - Who from where can have an access to which application
- Application removing function

MEASUREMENT OF SOFTWARE USAGE

- Software measurement functions
 - E.g.: Distributed applications
 - if # of licenses reached new user cannot start it
- Reports on
 - distribution
 - usage
 - of applications

DESKTOP MANAGEMENT SERVICES

- Creating a system image, automatic installation
- Personalized software installation, automatic application supervision, measurement of software usage (statistics)
- Policy-based desktop supervision
- Remote supervision
- Full hardware and software inventory

POLICY-BASED DESKTOP SUPERVISION

- Policies
 - determined of the (access) rights of users/user groups on company level
 - what can be configured
 - what can be loaded, installed
 - which SW applications can be executed
 - desktop settings
 - which network resources can be used
 - rights assigned to persons not to machines
 - stored in a central database
 - in case of modification automatically distributed to all concerned machines

DESKTOP MANAGEMENT SERVICES

- Creating a system image, automatic installation
- Personalized software installation, automatic application supervision, measurement of software usage (statistics)
- Policy-based desktop supervision
- Remote supervision
- Full hardware and software inventory

REMOTE SUPERVISION

- Faults can be prevented, fixed
 - users are not bothered with technical questions
 - pressing "help request" e-mail to SA (system administer) with the description of the error
- Remotely controllable machines
 - if entitled
- SA can control the system from anywhere (via Internet)

FUNCTIONS OF REMOTE SUPERVISION

- Remote file transfer, program execution, diagnostics
- Locking/unlocking of mouse/keyboard during remote control
- Switch off display remotely

 not to see specific remote control operations
- A "Wake on LAN" a switched-off desktop can be switched on
- Access rights can be assigned
 - by users, by groups, by departments, by sites, by desktops – according to policies
 - Restrictions even for SAs

DESKTOP MANAGEMENT SERVICES

- Creating a system image, automatic installation
- Personalized software installation, automatic application supervision, measurement of software usage (statistics)
- Policy-based desktop supervision
- Remote supervision
- Full hardware and software inventory

FULL HARDWARE AND SOFTWARE INVENTORY

- Hardware inventory
- Software inventory
 - "built-in" list
 - program items/settings can be added
- Data stored in an SQL database
- Predefined / "Own" reports
 - upgrades
 - expiration of licenses
 - paths of programs (needed at removal!)

