SNMP

...Simple Network Management Protocol...

Outline of the SNMP Framework

SNMP Transport Architecture

• UDP

- "unreliable" transport layer

SNMP Encapsulation

- UDP Port 161 SNMP Messages
- UDP Port 162 SNMP Trap Messages

Connectionless Protocol

- Because of UDP
- There are no low level guarantees for receiving the management-traffic
- Pro's
 - Smaller overhead
 - Simpler protocol
- Con's
 - The Connection-oriented behavior (if needed) must be implemented by the application

SNMP Operations

- Get-Request(0) requests a value or set of values from a Management Agent MIB.
- Get-Next-Request(1) requests the value of the next lexicographically larger Object Identifier in a MIB tree given the present Object Identifier.
- Get-Response(2) is a response from the management agent to the management station supplying the requested values.
- Set-Request(3) sets a value (or an action) in the management agent MIB.
- Trap(4) is an unsolicited message from a management agent to management station that is initiated by an alarm/event pair on the management agent.

SNMP Message Sequences

Lexicographical Ordering

- is used for accessing MIB objects serially
- given the tree structure of a MIB, the OID for a particular object may be derived by tracing a path from the root to the object
- lexicographical ordering is also referred to as:
 - preorder traversal (root, left, right) of a tree
 - depth-first search
- useful for examining MIBs whose structure is not known to NMS

Lexicographical Ordering Example

SNMP Management Information

- Management Information is modeled as (managed) objects and relationships among them.
- A *MIB (Management Information Bases)* is a collection of objects, grouped for a specific management purpose.
- All objects are organized in the *global MIB tree*.
- Each MIB represents a sub tree of this global MIB tree.
- The *leaf objects of the tree contain object instances with* the state and control variables of the managed system.
- Device manufacturers often define their own device specific MIBs.

The Global MIB Tree

MIB Tree Example

SNMP Operations Cont'd

- Not possible to change the structure of a MIB
 - cannot add or delete object instances
- No explicit action is supported
- Access is provided only to leaf objects in the MIB tree
 - not possible to access an entire table or a row of a table with a single atomic action
- These simplify the implementation of SNMP but limit the capability of the NMS

The Structure of SNMP Management Information (SMI)

- SMI, the SNMP management information model, provides guidelines for defining MIBs, object types and object identifiers.
- These definitions are written in the language ASN.1 (Abstract Syntax Notation 1).
- ASN.1 includes also rules on how the management information is encoded, i.e., mapped into octet strings.

SNMP PDU Structure

Version Community SNMP PDU	Version	Community	SNMP PDU
----------------------------	---------	-----------	----------

(a) SNMP message

id id	PDU type	request- id	0	0	variablebindings
-------	----------	----------------	---	---	------------------

(b) GetRequest PDU, GetNextRequest PDU, and SetRequest PDU

PDU type	request- id	error- status	error- index	variablebindings
	A-29860		1	

(c) GetResponse PDU

PDU type	enterprise	agent- addr	generic- trap	specific- trap	time- stamp	variablebindings
----------	------------	----------------	------------------	-------------------	----------------	------------------

(d) Trap PDU

					200	0.00000-2000043 in https://www.com
namel	valuel	name2	value2	• • • •	namen	valuen

(e) variablebindings

SNMP Encoding using ASN.1

- CCITT (X.209) and ISO (ISO 8825)
- Basic Encoding Rules (BER)
 - Type-Length-Value (TLV))
 - Recursive structure,
 - «V» can contain another TLV

Encoding a value

EOC = 00000000

Identifiers

<u>Class</u> :

- 00 = Universal
- 01 = Application
- 10 = Context specific

11 = Private

- $\frac{P/C}{0}$: 0 = Primitive type
- 1 = Constructed type

- Tag number :
- 1 = Boolean type
- 2 =Integer type

...

> 30: X...X = tag number

Length

ASN.1 Encoding Example

TYPE	VALUE	ENCODING
INTEGER	-129	02 02 FF 7F
OCTET STRING	«John»	04 04 4A 6F 68 6E
SEQUENCE (INTEGER, INTEGER)	(3, 8)	30 06 02 01 03 02 01 08

Example: Encoding Get Request

GET 1.3.6.1.2.1.1.1.0 (sysDescr)

30 27	SEQUENCE (0x30) 39 bytes
02 01 00	INTEGER VERSION (0x2) 1 byte: 0
04 06 70 75 62 6c 6	59 63 OCTET STRING COMMUNITY (0x4) 6 bytes: « public »
a0 1a	GET-REQUEST-PDU (0xa0) 26 bytes
02 02 73 00	INTEGER REQUEST-ID (0x2) 2 bytes: 29440
02 01 00	INTEGER ERROR-STATUS (0x2) 1 byte:
	noError
02 01 00	INTEGER ERROR-INDEX (0x2) 1 byte: 0
02 01 00 30 0e	INTEGER ERROR-INDEX (0x2) 1 byte: 0 SEQUENCE (0x30) 14 bytes
02 01 00 30 0e 30 0c	INTEGER ERROR-INDEX (0x2) 1 byte: 0 SEQUENCE (0x30) 14 bytes SEQUENCE (0x30) 12 bytes
02 01 00 30 0e 30 0c 06 08 2b 06	INTEGER ERROR-INDEX (0x2) 1 byte: 0 SEQUENCE (0x30) 14 bytes SEQUENCE (0x30) 12 bytes 5 01 02 01 01 01 00 OBJECT ID (0x6) 8 bytes: 1.3.6.1.2.1.1.1.0

Example: Encoding Get Response

GET RESPONSE 1.3.6.1.2.1.1.1.0 (sysDescr = «alphaB...»)

30 81 84	SEQUENCE (0x30) 132 bytes
02 01 00	INTEGER VERSION (0x2) 1 byte: 0
04 06 70 75 62	6c 69 63 OCTET STRING COMMUNITY (0x4) 6 bytes: «public»
a2 77	GET-RESPONSE-PDU (0xa2) 119 bytes
02 02 73 00	INTEGER REQUEST-ID (0x2) 2 bytes: 29440
02 01 00	INTEGER ERROR-STATUS (0x2) 1 byte: noError
02 01 00	INTEGER ERROR-INDEX (0x2) 1 byte: 0
30 6b	SEQUENCE (0x30) 107 bytes
30 69	SEQUENCE (0x30) 105 bytes
06 08 2b	06 01 02 01 01 01 00 OBJECT ID (0x6) 8 bytes: 1.3.6.1.2.1.1.1.0
04 5d 61	6c 70 68 61 42 OCTET STRING (0x4) 93 bytes: «alphaB»

SNMP Security Concepts

Authentication service

- agent may wish to limit access to the MIB to authorized managers
- Access policy
 - agent may wish to give different access privileges to different managers
- Proxy service
 - agent may act as a proxy to other managed devices
 - this may require authentication service and access policy for other managed devices on the proxy
- SNMP provides only a primitive and limited security capability via the concept of community

SNMP Community

- is a relationship between an agent and a set of managers that defines authentication, access control & proxy characteristics
- a community is locally defined by the agent
 - each community is given a unique community name
 - an agent may establish a number of communities
 - the community name is needed for all get and set operations
 - the same community name may be used by different agents
- SNMP authentication service
 - every SNMP message from a manager includes a community name (used as a password) --- very primitive
 - most agents only allow GET operations

SNMP Community Cont'd

SNMP Access Policy

 an agent can provide different categories of MIB access using the following concepts: SNMP MIB View & Access Mode

SNMP MIB View

- a subset of objects within a MIB
- different MIB views may be defined for each community
- the set of objects in a view need not belong to a single subtree

SNMP Access Mode

- an access mode {READ-ONLY, READ-WRITE} is defined for each community
- the access mode is applied uniformly to all objects in the MIB view

SNMP Community Profile

- a combination of a MIB view and an access mode

MIB ACCESS Category vs. SNMP Access Mode

MIB ACCESS	SNMP Access Mode				
Category	READ-ONLY	READ-WRITE			
read-only	Available for get and trap operations				
read-write	Available for get and trap operationsAvailable for get, s and trap operation				
write-only	Available for get and trap operations, but the value is implementation-specific	Available for get, set, and trap operations, but the value is implementation-specific for get and trap operations.			
not accessible	Unavailable				

SNMP RFC's

RFC	Description	Published	Current Status
1065	SMIv1	Aug-88	Obsoleted by 1155
1066	SNMPv1 MIB	Aug-88	Obsoleted by 1156
1067	SNMPv1	Aug-88	Obsoleted by 1098
1098	SNMPv1	Apr-89	Obsoleted by 1157
1155	SMIv1	May-90	Standard
1156	SNMPv1 MIB	May-90	Historic
1157	SNMPv1	May-90	Standard
1158	SNMPv1 MIB-II	May-90	Obsoleted by 1213
1212	SNMPv1 MIB definitions	Mar-91	Standard
1213	SNMPv1 MIB-II	Mar-91	Standard
1215	SNMPv1 traps	Mar-91	Informational
1351	Secure SNMP administrative model	Jul-92	Proposed Standard
1352	Secure SNMP managed objects	Jul-92	Proposed Standard
1353	Secure SNMP security protocols	Jul-92	Proposed Standard
1441	Introduction to SNMPv2	Apr-93	Proposed Standard
1442	SMIv2	Apr-93	Obsoleted by 1902
1443	Textual conventions for SNMPv2	Apr-93	Obsoleted by 1903
1444	Conformance statements for SNMPv2	Apr-93	Obsoleted by 1904
1445	SNMPv2 administrative model	Apr-93	Historic
1446	SNMPv2 security protocols	Apr-93	Historic
1447	SNMPv2 party MIB	Apr-93	Historic
1448	SNMPv2 protocol operations	Apr-93	Obsoleted by 1905
1449	SNMPv2 transport mapping	Apr-93	Obsoleted by 1906
1450	SNMP√2 MIB	Apr-93	Obsoleted by 1907
1451	Manger-to-manger MIB	Apr-93	Historic
1452	Coexistence of SNMPv1 and SNMPv2	Apr-93	Obsoleted by 1908
1901	Community-Based SNMPv2	Jan-96	Experimental
1902	SMIv2	Jan-96	Draft Standard
1903	Textual conventions for SNMPv2	Jan-96	Draft Standard
1904	Conformance statements for SNMPv2	Jan-96	Draft Standard
1905	Protocol operations for SNMPv2	Jan-96	Draft Standard
1906	Transport mapping for SNMPv2	Jan-96	Draft Standard
1907	SNMPv2 MIB	Jan-96	Draft Standard
1908	Coexistence of SNMPv1 and SNMPv2	Jan-96	Draft Standard
1909	Administrative infrastructure for SNMPv2	Feb-96	Experimental
1910	User-based security for SNMPv2	Feb-96	Experimental