# MANAGEMENT OF INFORMATION SYSTEMS

BME VIK TMIT
SOFTWARE ENGINEERING, BSC

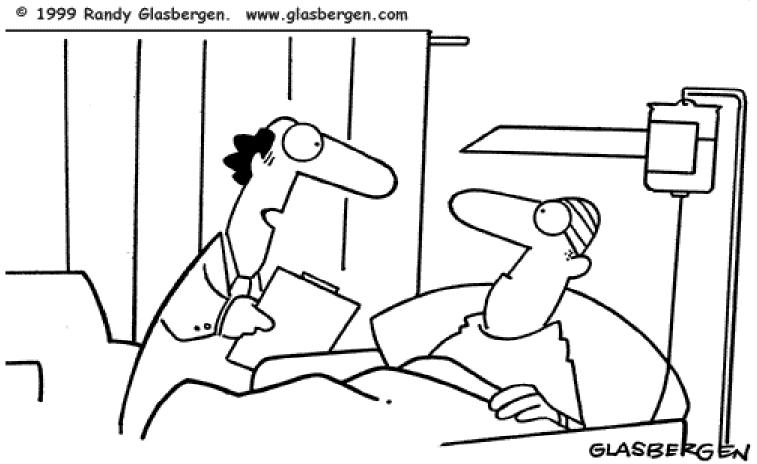




# MANAGEMENT OF INFORMATION SYSTEMS

6. BACK-UP AND RESTORE






# BACK-UP AND RESTORE

- Back-up / archiving definition
- Back-up
  - Tape
  - Back-up systems
  - Back-up methods
    - Full, incremental, differential, progressive
- Archives
  - Archivation requirements
- Design of back-up
  - Example
- Restore



# BACK-UP AND ARCHIVE



"You caught a virus from your computer and we had to erase your brain. I hope you kept a back-up copy."



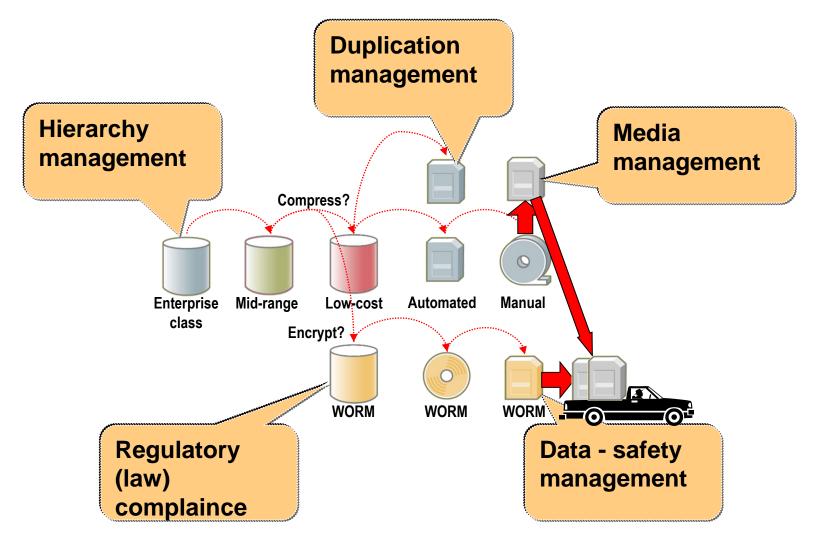


# **BACK-UP AND ARCHIVE**

**Goal of back-up / archiving:** recovery safeguard, make copies for preventing data loss

Goal of back-up: guarantee business continuity

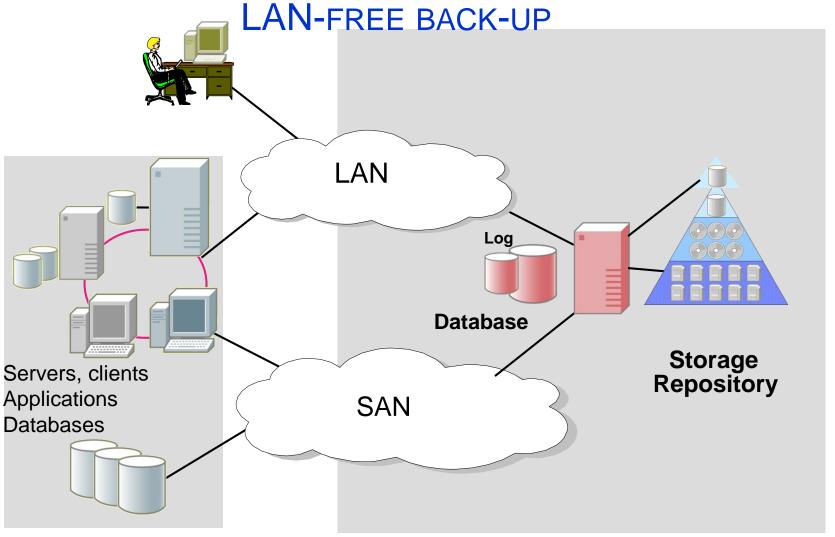
- Delete: the user accidentally / intentionally delete/overwrite
- Failure: storage device/system fails


**Goal of archiving:** to reproduce the entire data of a certain point in time

- with a granularity of a quarter, half, or full year
- Business, legal (determined by law) etc. reasons: data serves as an evidence, basis for a comparision, reference
- Not used data have to be deleted: maintenance / evidence(!!) / legal(!!) reasons

Tipically common base technology for back-up/archiving




# Modern Storage System Requirements







# STORAGE SYSTEM ARCHITECTURE



Clients Server Storage pools



# LAN-FREE BACK-UP AND RECOVERY

# LAN-Free client data transmission

- Server manages the internal storage pool
- The client moves the data from disk to tape, or to a SAN disk
- Meta-data are moving on LAN network
- LAN is not overloaded by heavy storage data traffic
- Scalable





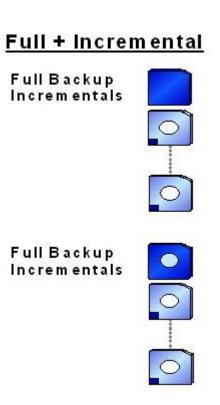
# **BACK-UP METHODS**

- Full back-up
- Incremental back-up
- Differential back-up
- Progressive Back-up Methodology





# FULL BACK-UP


- Save the whole disk content every day
  - Huge amount of data
  - Slow
  - Low utilisation of tapes
    - Saved many times, even if not changed
- BUT:
  - Fast restore (one tape)



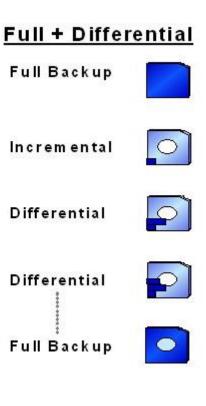


# INCREMENTAL BACK-UP

- Full back-up only on the first day
- Then only the changes since the previous day
  - Small amount of dataBUT:
  - Restore is slow
  - Low utilisation of tapes
    - almost empty








# DIFFERENTIAL BACK-UP

- Full back-up only on the first day
- Then only the changes since full back-up
  - Greater, constantly groving amount of data

#### **BUT**:

- Shorter restore time (max. 2 tapes)
- More tapes







# PROBLEM OF INCREMENTAL / DIFFERENTIAL BACK-UP

| Day 1  | Day 2           | Day 3          | Day 4          | Day 5          |
|--------|-----------------|----------------|----------------|----------------|
| File A | File A renamed  | File F         | File F         | File F deleted |
|        | to File F       |                |                |                |
| File B | File B deleted  |                |                |                |
| File C | File C renamed  | File G         | File G         | File G         |
|        | to File G       |                |                |                |
| File D | File D moved    | File D         | File D deleted |                |
|        | to new location | (new location) |                |                |
| File E | File E          | File E         | File E         | File E         |

| Files from<br>Day 1 FULL<br>backup |   |
|------------------------------------|---|
| File A                             |   |
| File B                             | + |
| File C                             |   |
| File D                             |   |
| File E                             |   |

| Files from Day INCREMENTAL DIFFERENTIAL backup | 3 / |
|------------------------------------------------|-----|
| File F                                         |     |
| File G                                         |     |
| File D (new location)                          |     |
|                                                |     |

| Hard Drive after a restore to Day 3 |
|-------------------------------------|
| File A – wrong                      |
| File F                              |
| File B <b>– wrong</b>               |
| File C – wrong                      |
| File G                              |
| File D <b>– wrong</b>               |
| File D (new location)               |
| File E                              |



# PROGRESSIVE BACK-UP METHODOLOGY

- Full back-up only once
- Then only incremental
- But back-up the file system, too
  - A bit more(!) more to save
- But at restore, we can find the actual state of a file (backward search)
  - Much faster when restore files that
    - modified several times
    - deleted





# ADVANTAGE OF PROGRESSIVE BACK-UP METHODOLOGY

| Day 1  | Day 2           | Day 3          | Day 4          | Day 5          |
|--------|-----------------|----------------|----------------|----------------|
| File A | File A renamed  | File F         | File F         | File F deleted |
|        | to File F       |                |                |                |
| File B | File B deleted  |                |                |                |
| File C | File C renamed  | File G         | File G         | File G         |
|        | to File G       |                |                |                |
| File D | File D moved    | File D         | File D deleted |                |
|        | to new location | (new location) |                |                |
| File E | File E          | File E         | File E         | File E         |

| Require files | d<br>from |
|---------------|-----------|
| Day 1         | FULL      |
| backup        |           |
|               |           |
|               |           |
|               |           |

| Required files from Day 2 & Day 3 INCREMENTAL backups |
|-------------------------------------------------------|
| File F                                                |
| File G                                                |
| File D (new location)                                 |

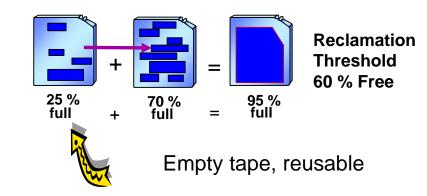
| Hard Drive after a restore to Day 3 |
|-------------------------------------|
| File F                              |
| H                                   |
| File G                              |
| File D (new location)               |
| File E                              |
|                                     |





# COLOCATION AND TAPE RECLAMATION

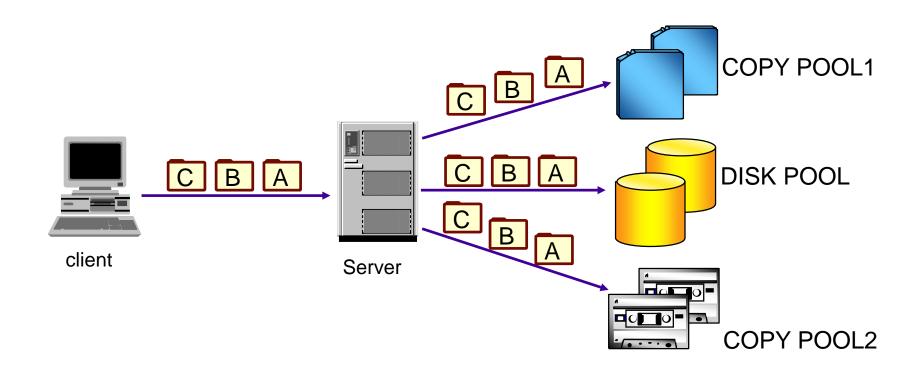
#### Colocation


Data of a client (group) to the same tape

Shorter restoration, fewer tape exchange

# Disk Pool BABBAR Hi Threshold Lo Threshold Tape Pool Client A BBBBCCC Client C Client C Client C Client C Client C

#### **Tape Reclamation**

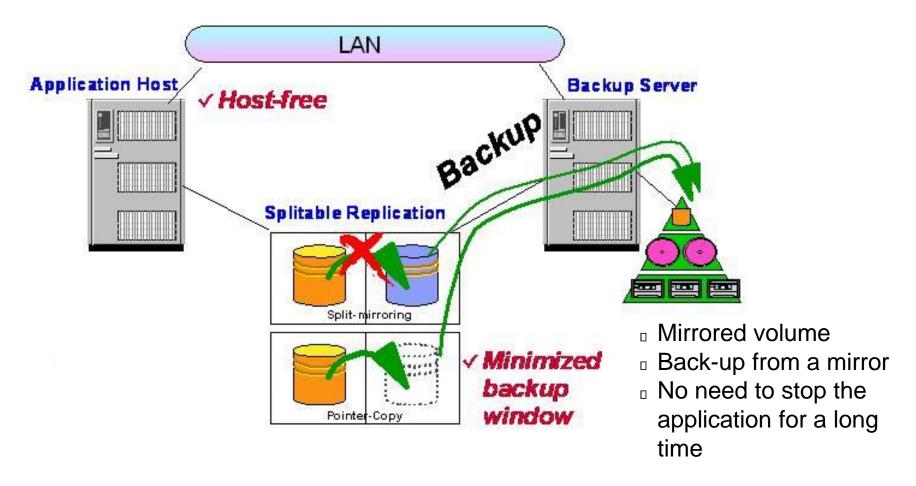

Copy valid data to a new tape after a user-specified threshold This copying can be timed







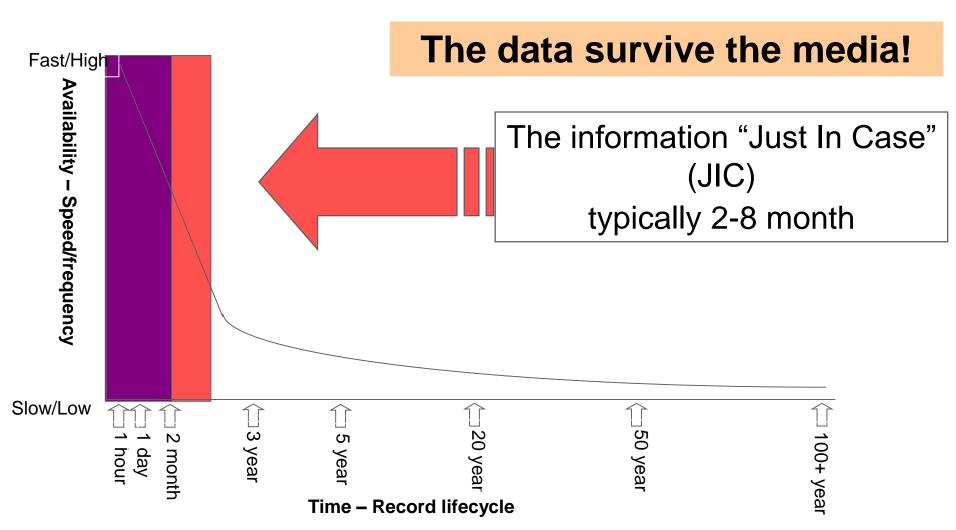
# PARALLEL BACK-UP




More back-up storage pools can be defined, simultaneous writing The target storage pools can be of different types (tape, disk). Disaster tolerant systems






# ZERO DOWN-TIME STORAGE



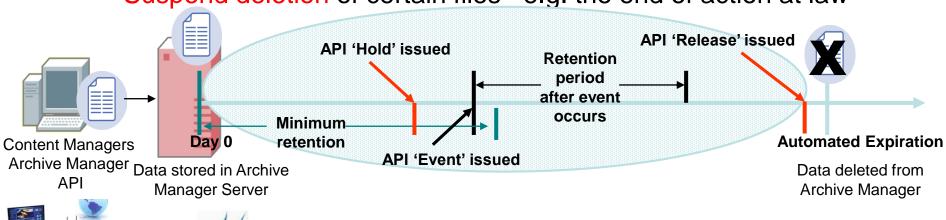




# THE JIC INFORMATION








# SPECIAL ARCHIVING REQUIREMENTS

Protect data from deletion till a predefined time / but deletes immediately after it

How to reach archiving functions

- Chronological Retention time policy:
  - Store the objects for a predefined time e.g. 3 years –
- –Event-based retention protection:
  - The storage time depends on an event e.g. 70 years after client death
- Deletion Suspend / Resume:
  - Suspend deletion of certain files—e.g. the end of action at law



## **ARCHIVES**

- Goal is different
- On technical level
  - ALWAYS full back-up
  - Archive tapes must be treated separately from "normal" back-ups – duplicating, off-site storing
  - Store at different places
  - Long life (~10 years) so not only the tapes to keep, but
    - Devices making/reading archives
    - Tools (programs)





# WHY TO USE TAPES?

# Advantages:

- Cheap
- Tapes can be taken out no continuous mechanical stress
- Long life 30 years
- Stored data can easily be deleted

# Disadvantages:

- Serial data access (slow)
- Tape insertation time
- More vulnerable



# LINEAR TAPE-OPEN (LTO) STANDARD

- Tape Format Standard: IBM, HP and Certance (Seagate) cosortium
  - Open system standard technology
  - 7th generation
  - Backward compatibility
- Since coming out (2000) wide range of industrial acceptance, leading tape technology
- Actual technology: Ultrium 7



# LINEAR TAPE-OPEN (LTO) FEATURES

Approximate years of life assuming one tape filled...

| Туре  | Year | Capacity | Entire-<br>tape<br>reads/<br>writes | per <i>month</i> | ed<br>per <i>week</i> |
|-------|------|----------|-------------------------------------|------------------|-----------------------|
| LTO-1 | 2000 | 100 GB   | 200                                 | 17               | 4                     |
| LTO-2 | 2003 | 200 GB   | 250                                 | 21               | 5                     |
| LTO-3 | 2005 | 400 GB   | 364                                 | 30               | 7                     |
| LTO-4 | 2007 | 800 GB   | 200                                 | 17               | 4                     |
| LTO-5 | 2010 | 1.5 TB   | 200                                 | 17               | 4                     |
| LTO-6 | 2012 | 2.5 TB   | _                                   |                  | _                     |
| LTO-7 | 2015 | 6.0 TB   | _                                   | _                | _                     |





# BACK-UPS MUST BE PLANNED

- Not enogh: "start at midnight"
  - Several back-up types!
  - Back-up window should not be the same
  - Back-up always reduces the performance of the system
  - Do at off-peak hours
    - But when are the peak hours?
  - Back-up outsourcing can lead to problems





# PLAN OF BACK-UP

- Corporate Guidelines
- Service Level Agreement (SLA)
- Back-up and Restore Policy
- Back-up Schedule





# CORPORATE GUIDELINES

- Valid for the whole company
- Defines terminology and dictates requirements for data-recovery systems
  - based on legal requirements
  - types of data to back-up
- Do not deal with every specific implementation detail





# DETERMINE THE SLA

- An SLA is a written document that specifies what kind of services and performance are to be provided
- Created with involving the customers
- Defines:
  - types of back-up
  - requested restoration times
  - how often to back-up
  - how long to keep back-ups
  - back-up windows





# **SLA EXAMPLE**

- Customers shall be able to get back any file
  - with a granularity of 1 business day for the past 6 months
  - with a granularity of 1 month for the last 3 years.
- Disk failures shall be restored in 4 hours, with no more than 2 days of lost data
- Archives shall be full back-ups on separate tapes generated quarterly and kept forever
- Critical data will be stored on a system that retains useraccessible snapshots made every hour from 7 AM until 7 PM, with midnight snapshots held for 1 week
- Databases and financial systems shall have higher requirements that shall be determined separately



# **BACK-UP POLICY**

- When SLA approved, determine the policy how to achive the requirements
- Typically obvious:
  - From SLA Example:
    - Daily back-ups
    - Tapes will be retained as specified in SLA
    - The policy determines how often full versus incremental back-ups will be performed





# **BACK-UP SCHEDULE**

- The back-up schedule lists details down to which partitions of which hosts are to be backed-up and when
- SLA changes rarely, but back-up schedule often
- Typically not written stored in the configuration of the back-up system





# BACK-UP SCHEDULE EXAMPLE

- Size of a partition: 4GB
- Full back-up to make: every 4 weeks (28 days)
- Suppose, size of differential back-up grows by 5% every day
  - Day1: Full back-up, 4 GB
  - Day2: 200 MB
  - Day3: 400 MB, etc.
  - Day10: 2 GB
  - Day 11: 2.2GB
  - Just these two days require more than a full back-up
  - Worth perform full back-ups at every 10 days!





# BACK-UP POLICY - TELL TO USERS

- Back-ups are performed only on data stored on servers (your PC's Z: drive, or UNIX /home directory) every night between midnight and 8 AM.
- We never do back-ups of your PC's local C: drive.
- If you need a file recovered, go to [insert URL]
  for more information, or send email to "help" with
  the name of the server, the file's complete path,
  and which date you need the restore from.
- Access problems, simple restores are done in 24 hours.



## **EXAMPLE**

- We have 2TB data on a server
- Use incremental back-up
- Change 10% / day
  - a. In case of a weekly cycle how large amount of data is to be backed up in 4 weeks?
- Full back-up: 2 TB
- Incrementals: 2TB \* 10% = 0.2 TB (each day)
- One week: 2TB + 6\*0.2 TB = 3.2 TB
- Four weeks: 4 \* 3.2 TB = 12.8 TB



b. How large will be the back-up window if the writing capacity of the back-up device is 100 GB/h?

- Sunday (full back-up)
  - 2 TB / 100 GB/h = 20 (!!) hours
- Other days:
  - 0.2 TB / 100 GB/h = 2 hours





c. How many devices are needed if the maximal allowed back-up window is 8 hours?

Worst: Sunday: 20 hours

3 devices needed





d. How many tapes are needed if we use new tape(s) every day and the capacity of a tape is 500 GB?

Sunday: 2 TB / 500 GB = 4 tapes

Other days: 0.2 TB (= 200 GB) = 1 tape

Total: 4 + 6\*1 = 10 tapes / week

40 tapes / 4 weeks





e. Maximum how many tapes needed to restore the content of a given day?

Worst: Saturday

Restore: 1 full + 6 incrementals

4 + 6\*1 = 10 tapes needed



# TAPE REQUIREMENT

 Back-up Policy affects the number of tapes needed





## RESTORATION

- Slow...
- Reading and writing speed of a tape often very different + access time!!
  - Often longer than to restore a partition!
- Speed of restoration is typically determined by the writing speed of the file descriptors!!
- Tricks to perform the back-up faster (e.g. incremental back-up) makes the restore slower
- Hardware limits
  - Tape fast, if the data arrives with exactly the same speed as the writing speed...
- Fastening: typically independent, dedicated network for back-up and restore



# RESTORATION: ACCESS RIGHTS-RELATED ISSUES

- Who has the right to claim the restoration (and usage) of a given file? – validation!
- File access rights change after restoration?
- File to be restored at the original place with the original access rights or at a different place with probably different access rights?
- Overwrites existing data?





# **CENTRALIZATION**

- Centralization typically reduces costs of:
  - Equipments (expensive, because require high speed and high precision mechanics and high reliability).
  - Tape replacement (expensive, because needs human's work)
- Disadvantages of distributed back-up
  - Back-up device to every server for high reliability: 2!
  - Tape replacement takes long time
- Network back-up systems
- Jukeboxs





# TAPE INVENTORY

- A set of back-up tapes with no index or inventory is only slightly more useful than no back-ups at all...
- Automatic inventory generation
  - No read every tape backward in time…
  - Partition level
  - File level fast, but large
  - (Automatic) restoration of inventory
- How to restore if the restore system fails?
  - At least minimal info on the tape itself





# FIRE DRILLS

- The only time to learn the quality the back-up system is when doing a restore
  - Restoring a randomly chosen file
  - Restoring a whole disk
    - rarely needed, maybe forget how to do
    - large amount of data capacity/bandwidth is really enough?





## CHANGES IN TECHNOLOGY

- Technology canges are different
  - Disk: almost linear (capacity doubles in 1-1.5 years)
  - Tape: capacity remains the same for years and the big change
    - The tape units (jukeboxes) are expensive not to replace *them* often
- When new tape type comes out retain 1 (2) pieces from the old platform!





# BACK-UP AND RESTORE - SUMMARY

- Back-up / archives
- Types of back-ups
  - Full, incremental, differential, progressive
- Design of back-up
  - Corporate Guidelines, SLA, Back-up policy, Back-up schedule, Time and Capacity Planning, Tape need calculation
- Restoration



