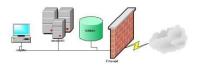

Management of Information Systems

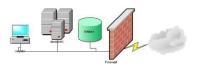
Dr Gusztáv Adamis adamis@tmit.bme.hu

BME VIK TMIT



Elements of the Infrastructure

- User terminals
 - Desktop Computer
 - Personal Computer
 - PDA, smartphone, etc.
- Server
- Network (operational and maintenance)
- Storage
- The user terminals, the servers, and their network are complex, computer systems, constituting several units: Information systems



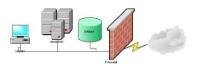
Servers

Server – desktop architectures Product families Characteristics of servers



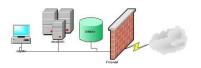
Servers - Definition

- Server: in computer science & information systems terminology a server is a (typically heavy duty) computer or software that provides
 - the access and usage of the stored or provided data for other devices,
 - usage of its *hardware resources* (e.g. printer, backup storages, processors)
 - access to different services.



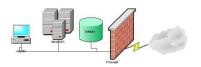
Classification of Servers

- According to functionality, e.g.
 - Web-servers,
 - FTP-servers,
 - Database-servers
- According to the served area, e.g.
 - Internet servers,
 - Intranet servers;
- According to power, capacity



Typical Product Families

- Most typically a computer vendor has 3 different product families:
 - home,
 - business,
 - server



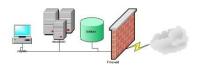
Home Product Family

- Characteristics of a home product family:
 - absolute cheapest starting price
 - expensive upgrades, accessories
 - characteristics are given in general terms
 - e.g.: video resolution rather than video card type
 - suppliers are changed frequently, so the are not "two same"
 - flexible "game features": joystick, high performance graphic, audio



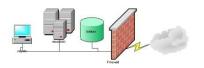
Business Product Family

- Characteristics of a business product family:
 - Minimizing the whole "life-cost" (more expensive start price, but longer lifetime)
 - Less frequent changes:
 - Expensive to store spare parts to a lot of (sub)types
 - Expensive to train the support/sales personal



Server Product Family

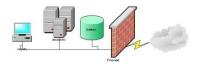
- Characteristics of a server product family:
 - Different architecture (to have "longer life": lot of free capacity, easy-to-upgrade, easy-to-expand)
 - Minimal cost comparing to performance
 - Easy to maintain, robust, minimal service/repairing time
 - Location of connection/control equipment/buttons: goal to be easy-to-maintain/expand, not to save space
 - Reliability is the key design option



Characteristics of Servers

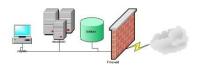
Comparing to the desktops, the most important characteristics:

- Different architecture
- Maintenance contract
- Disk backup systems
- Different operating system configuration
- Better remote access
- Different location (reside in data centres)



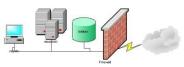
Hardware Characteristics of Servers

- More internal space for (future) extensions: for cards, CPU-s, drives, etc.
- More CPU performance: more CPUs or one very fast and powerful CPU (but frequently I/O bound!)
- High performance I/O: typically servers perform much more I/O activities than the clients (prop. to # of clients)
 - Fast I/O subsystem,
 - Fast internal buses,
 - Fast network interfaces,
 - RAID technology
- More upgrade options
 - designed for growth easy to add/replace CPU, memory...
- Rack mountable design
- No side-access needs (connectors/controls only at front and back)

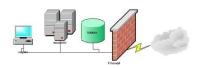


Server Appliances

- A Server Appliance is a device that is suitable for one, dedicated service
- E.g.:
 - File server
 - Web-server
 - (E-)mail server
 - DNS server

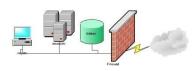


Servers

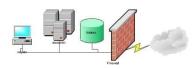


Server Racks

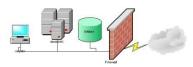
- Rackmount servers
 - RU (rack unit) or U
 - 1.75 inch high
 - 19 (or 23) inches wide
 - Servers typically 2U or 4U
 - For virtualization larger performance required -> larger space
 - Full-rack (Full-wide) / Half-rack (Half-wide)servers



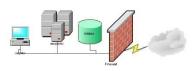
1U, 2U, 4U Servers



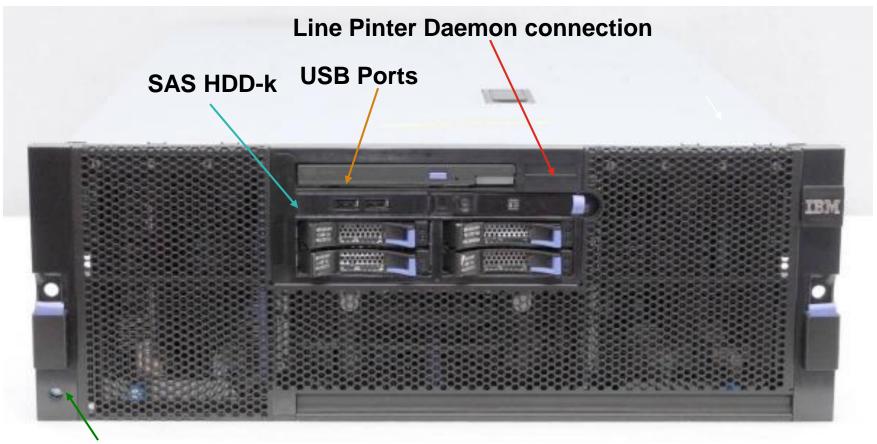

Server rack front

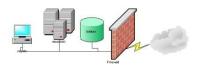


Server rack back



User terminal

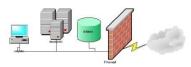




Front panel

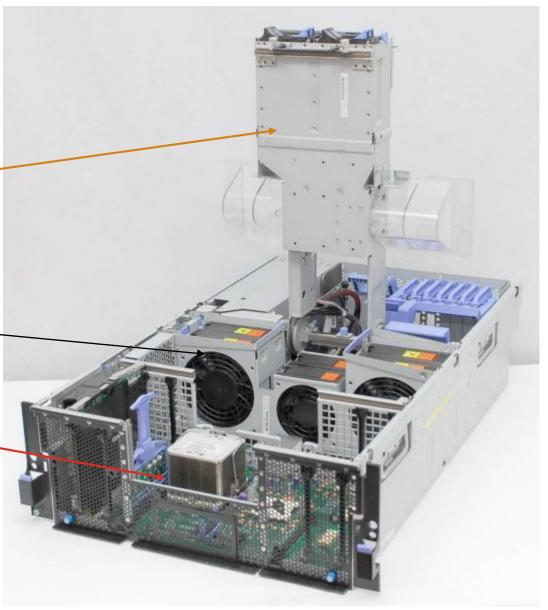


Internal view

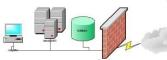

PCI Slots

Media HDD slot

CPU Board

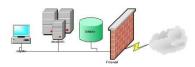

Centerfold media HDD slot

Media HDD slot

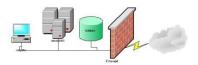

- 4 2.5" HS SAS HDD
- Front panel USB slots

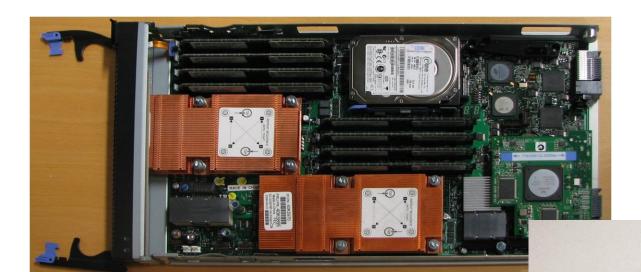
Fans

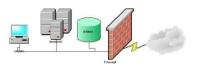
CPU card

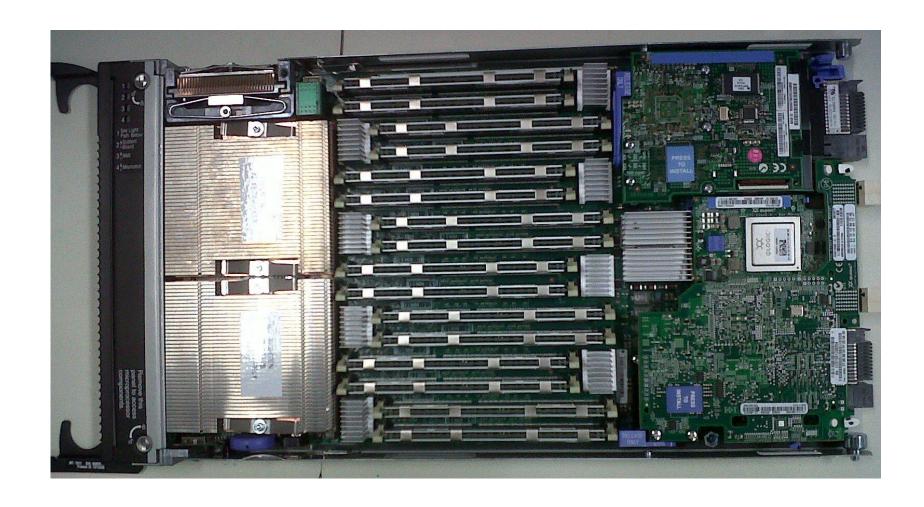


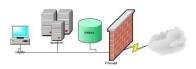
Memory card

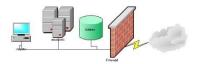





- Stripped-down computer
- Optimized to consume a minimal amount of power
- Use the space in a data center as efficiently as possible
 - Server density can be ~6 times higher
- How can it be achieved?
 - Only the core components
 - CPU, memory, integrated NW controller
 - Optionally Fiber Channel Host Bus Adaptor (HBA)
 - Rest --???

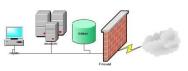


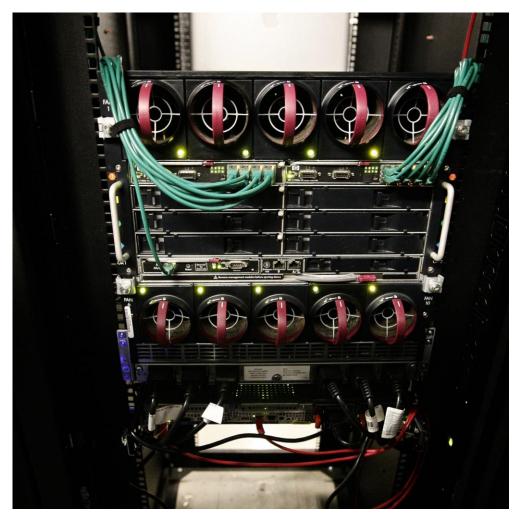


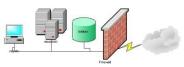


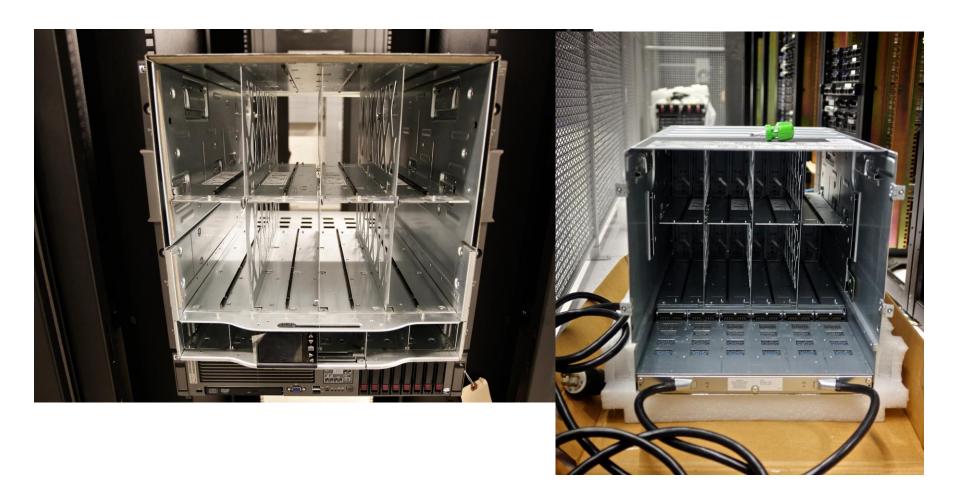
Blade Chassis

- Blade server cannot be used on its own
 - -> blade chassis
- Consolidation of
 - Power supply
 - But: more power cables
 - Cooling
 - Disks (in blades no or even just a few -> SAN)
 - Bootable from SAN
 - Network connectivity
 - User interface ports
 - Keyboard, video, mouse, DVD

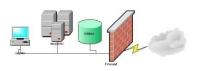



Blade Server Chassis - front




Blade Server Chassis - rear

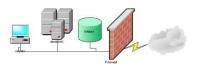
Blade Server Chassis – empty



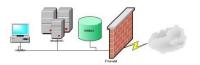
Blade Server Chassis – midplane

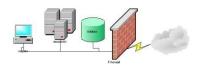
- Redundant interconnections among blades
- Switch
- Media IF
- Management (load sharing)
- Redundant power distribution

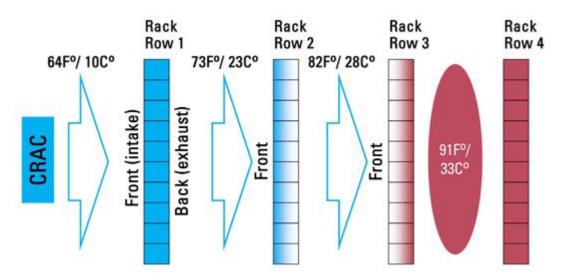
Half-wide and full-wide blades

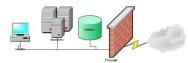


Blade Server – terminology


- Server blade
 - One server
- Blade server
 - Synonym of Server blade
 - Chassis with server blades
 - Blade (Server) System

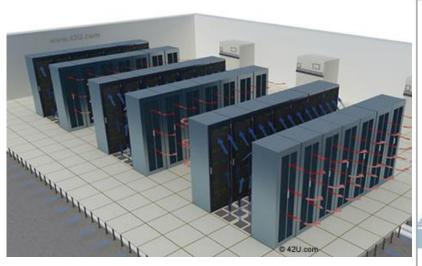

- Why to use them?
 - Smaller space (~ 1/6 1/10)
 - Smaller room
 - Fewer racks
 - Shorter cables (up to 85% reduction)
 - Smaller power consumption (25-50%)
 - -> Reduced cooling costs
 - But...
 - Large computation power
 - High processor/core density

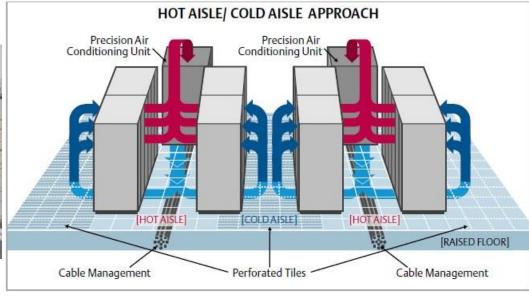

- But...
 - Price
 - A blade server is cheaper, but the chassis is expensive
 - It worths if it is full (14-16 or more...)
 - Not good for small companies
 - Chassis is not standardized
 - Only one company
 - Or even only one type (!)

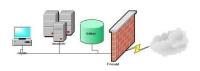


Cooling

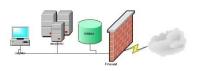
- Though less power (heat), but power/heat density is high
- More efficient, special cooling system
- Traditional case:





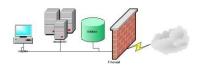

Hot Aisle/Cold Aisle Layout

- Fronts of the server(rack)s face each other
- Raising the floor ~50cm



Hot Aisle/Cold Aisle Layout

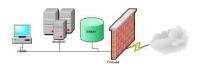
Blade Servers


Memory

- Smaller than in 'regular' servers, but in nowaday's models acceptable
- But not extendable, because of lack of space

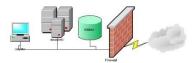
Disks

- Typically no or very limited disk space
 - 1-2 disks
 - For the operating system, not to store (large amount of) data
- Disk/Storage modules in chassis
 - Consumes (lot of) space
 - Often it is still not enough
 - SAN Fibre Channel cards
 - Typically do not support hot-swappable disks
- When is it a big problem???



Advantages

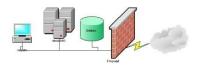
- More computation power on less space
- Management
 - Failover/load balancing
 - designed for this
 - Self-diagnosis replace
- Easy set-up
 - Just plug-in into the chassis
 - Power, network, cabling solved in chassis
 - Not to connect each server separately to power, net (Ethernet, SAN, management NW), display, keyboard, mouse


Disadvantages

- Special climate control
- Costs
 - Server + chassis
 - Not well scalable
 - Special initial configuration, special training, special administration
 - Not compatible, vendor-specific solutions
 - Vendor lock
- Devaluation
 - Cannot be upgraded
 - Not standardised, not compatible new server with old chassis

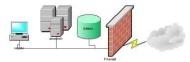
What can they be used for?

- Tasks for high computing but less storage requirements
 - E-mail, web servers
 - SSL encrypting of Web communication
 - Infrastructure applications such as DNS
 - Streaming audio and video content
 - Database control
 - Virtualization, virtual machines memory!!!
 - Distributed computing
- Server clusters
 - See later in Data Centers chapter



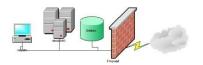
Homogeneous / heterogeneous systems

- Servers can be
 - Homogeneous (from same vendor/from same type, family)
 - Heterogeneous (from more, different vendors/from different product families).
- Advantages of homogeneous systems:
 - Easier education
 - Easier maintenance
 - Easier repairing (one set of spares)
- Advantages of heterogeneous systems :
 - Can not stuck when something happens (bankrupt) to the vendor
 - Most appropriate equipment can be chosen to all tasks
 - Competition between vendors result in smaller price



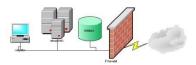
Reliability of Servers

- More users depend on them reliability is the key
- Small repairing time
 - Different architecture "longer life"
 - Free capacity
 - Duplications
- Maintenance agreement
- Disk backup
- Location in a safe place (data center)

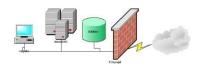


Location of Servers

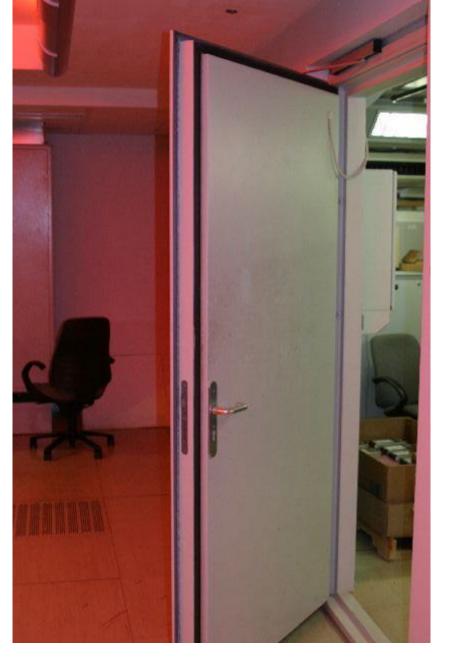
- Must be protected against
 - Damage by disaster
 - Electromagnetic influence
 - Damage caused by human
- Must be located in a safe place
 - UPS Uninterruptible Power Supply
 - HVAC heating, ventilating and air conditioning
 - Fire protection
 - Physical protection (physical harm, unauthorized access)



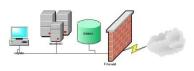
Uninterruptible Power Supply (UPS)



Fire alarm sensor

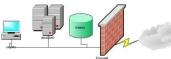


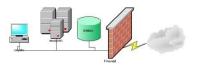
Fire-extinguisher

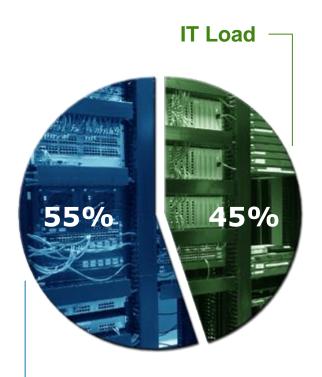


Management of Information Systems

Fire-safe door

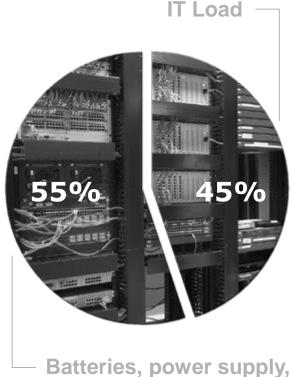



Air Conditioning is essential ©

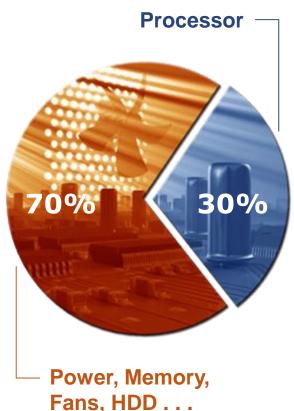


 How large part of the energy do you think is used for useful CPU calculations?

Data Centre

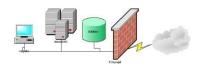


Batteries, power supply, air conditioning

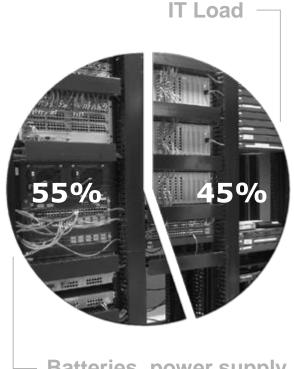


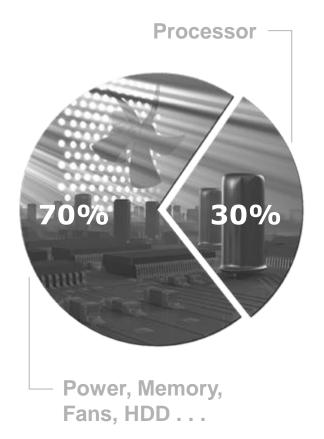
Data Centre

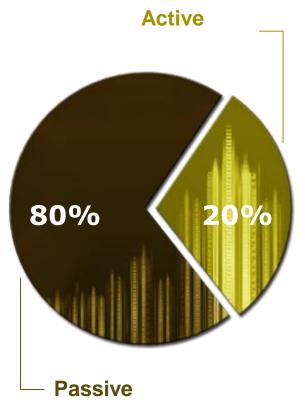
Server hardware



Fans, HDD...

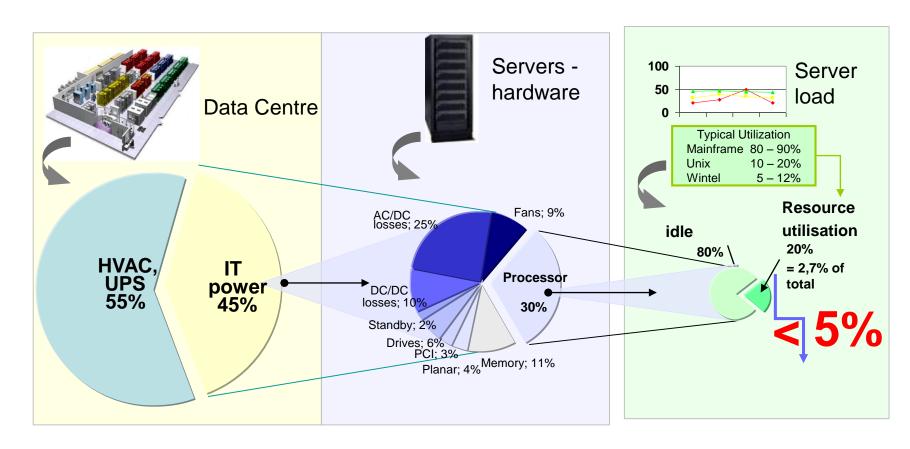


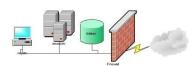

Data Centre


Server hardware

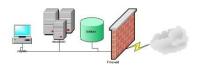
Server loads

Batteries, power supply, air conditioning



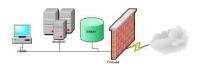


Real View of the Power Consumption of a Data Center



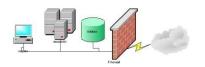
Data Centers

- Own site
- Data centrer, server hotels
- Server service
- Outsourcing
 - Advantages
 - More economic, specific competence
 - Disadvantage
 - Vulnerability
- Later in details



Maintenance Contracts

- When purchasing a server, must also be considered how repairs will be handled
- Vendors tend to have a variety of maintenance contract options
 - -4 hours,
 - 12 hours,
 - 1 day response contract,
 - Only provision of spare parts that is replaced when spare parts get used


Maintenance Contracts - examples

- Low/medium critical host: 1-2 day response time or no special contract at all
- Large groups of similar hosts: typically spare kits and the repairs can be done by local staff
- Controlled model selection: Goal to have just two different models
- Critical host: too expensive to have fully stocked spare kits. Stock only spares for parts that commonly fail (disk, power supply – interchangeable typically) + same day response maintenance contract
- Large variety of models from same vendor:
 - Very large number of hosts: on-site technician
 - Medium size: spares kits on the spot + technician nearby
 - Direct access to spare kits on an emergency basis
- Highly critical host: on-site technician + duplicate machine ready to be swapped into place (typically as expensive as a redundant server, but better option for non-technical companies)

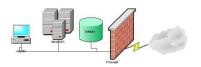
Stocking Spares – Service Contract

- Trade off between stocking spares (1) service contract
 (2)
 - (1) Too expensive for a small site
 - (2) Typically includes diagnostic services even if over the phone
- Sometimes the easiest way to diagnose swap in spare parts until the problem goes away. But its local management (training technicians, stocking spares) can be complicated, if
 - Small, medium site companies
 - Non-technical companies
 - Wide variety of models used

Conclude a Maintenance Contract

- Sometimes it is discovered that a critical host is not on the service contract at a critical time
- To prevent a host being missed from a maintenance contract:
 - Good inventory program
 - Have the person responsible for purchasing machines to be the person responsible for maintenance contracts
 - Maintenance contracts also for the (~ 1 year)
 warranty period with "zero dollar charge"

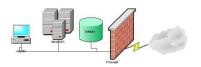
Data Backup


Theory:

 Data stored on clients are not backed up. So it is advisable to users to store their data on server – that is backed up. So no need to backup the local data

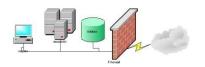
• But:

especially in certain operating systems
 (Windows) a lot of personal settings,
 configuration files, downloaded programs are stored locally



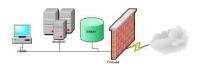
Data Backup

- Data stored on servers are backed up
 - In case of failure to restore the data (to a not too old state)
 - Archivation
- Later on discussed in full details



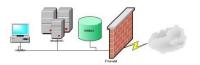
Operating Systems

- The operating systems of the servers and desktops can be
 - Different
 - E.g.: in a case of a web-server the operating system of the server and the client may be different, only the communication protocol must be the same
 - Same (exactly, or same operating system with different settings)
 - UNIX CPU server



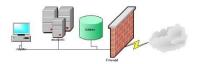
Special Administrative Network

- Servers need to be maintained remotely later in details
- Advisable to maintain a special, administrative network for back-ups and monitoring
- Back-ups require to carry very high amount of data over the network – highly reduce the bandwidth for users
- The special, administrative network: simpler, more faulttolerant elements
- Unaffected by the outages of the "regular" network
 - Monitoring system less likely product false errors when there is a network problem
 - A tool for the system administrators to reach the machines during such outages



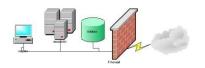
Remote Administration Access

- In old days: Separate keyboard + monitor to every server
- Now: console server
- Advantage:
 - Save space
 - All the tasks can be done remotely
 - Not in the air-conditioned/protected data centre
- Remotely controlled power supplies



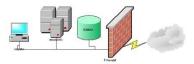
Redundancy

- Disk storage redundancy (RAID) later
- Redundancy of components
- Redundant power supply
- Hot-swap components



Full and n+1 Redundancy

- n+1 redundancy: one of any particular component can fail, yet the system is still functional.
- Full redundancy: two complete sets of hardware are set up, and some kind of "fail-over" is configured
 - Switch over: manual or automatic
 - One system works other idle till failure
 - Load sharing both systems work with half of the total load, but both have enough capacity to cope with the whole load.
- In case of n>2: n+1 redundancy is cheaper than full
- Often not the whole system is n+1 redundant, only the main parts

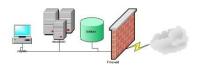


Redundant Power Supply

- Power Supply: after HDDs the next most failure-prone component
- Does not simply mean that 2 such devices
 - Means that the system can be operational if one power supply is not functioning (n+1 redundancy)
- Each power supply should have more separate power cords
 - Loose connection
 - Relocation is possible
 - Reliability: each cord from different power supply

Hot-swap Components

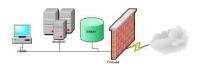
- Normally: parts can be removed and replaced only when the system is powered off
- Hot-swap: ability to remove and replace a component while the system is running
 - but often the replacement can be performed at the next scheduled maintenance period
 - risk of double failure



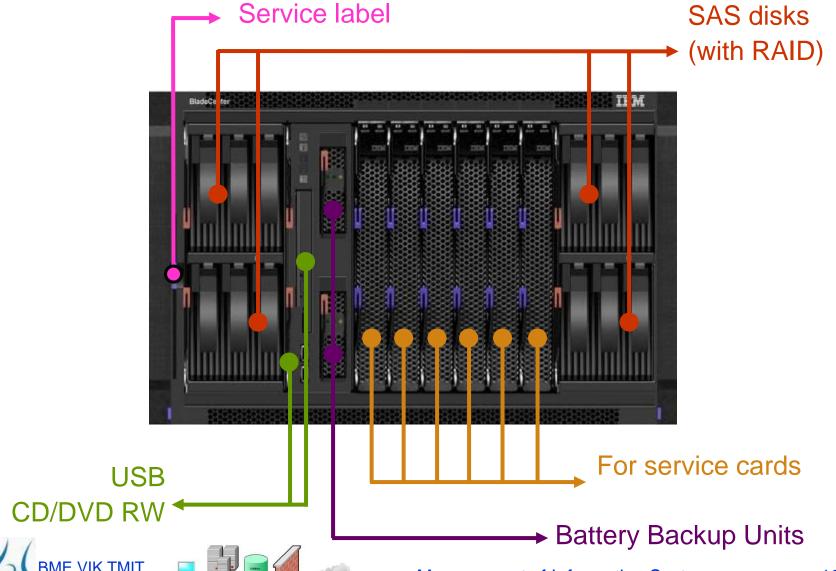
Hot-swap Problems

- Which parts are not hot-swappable?
- How and how long is service interrupted when the parts are hot-swapped?
- Some network devices have hot-swappable IF cards, but the CPU is not
- How long can the system operate or only with degraded capacity?
 - e.g.: hot-swapped disk, while data content build on the new
- The device is hot-swappable, but when a new unit added – reset...
- So hot-swap parts do not makes outages disappear for sure, they just reduces the (risk of) outage

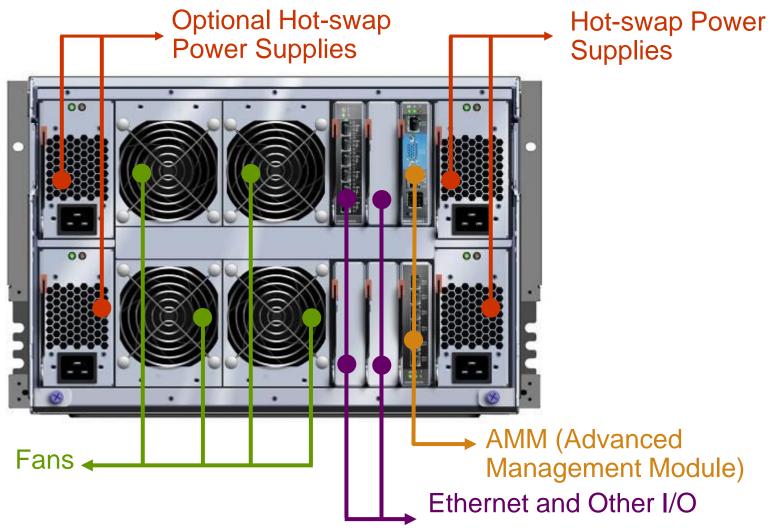
Examples for Redundancy

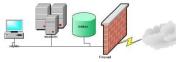

Reliability

- Disks
- Redundant power supply
- Redundant cooling
- All I/O connections redundant
- Doubled switching modules
- Redundant buses, disk connectors
- Doubled management modules

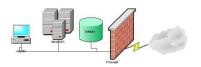

Availability

- Management system monitors the components
- Predictive Failure Analysis
- Error logs



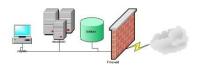

Server front

Server back



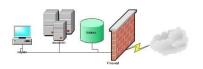
Desktops

- Desktop
 - Definition, characteristics
- Desktop management
 - Tasks of ~

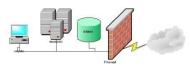


Desktops / Personal computers

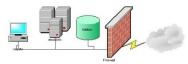
- Desktop
- Personal Computer (PC)
- Newer solutions
 - Docks (laptop)
 - Personal Digital Assistants (PDA)
 - Smartphone
- Personal terminals, Personal machines

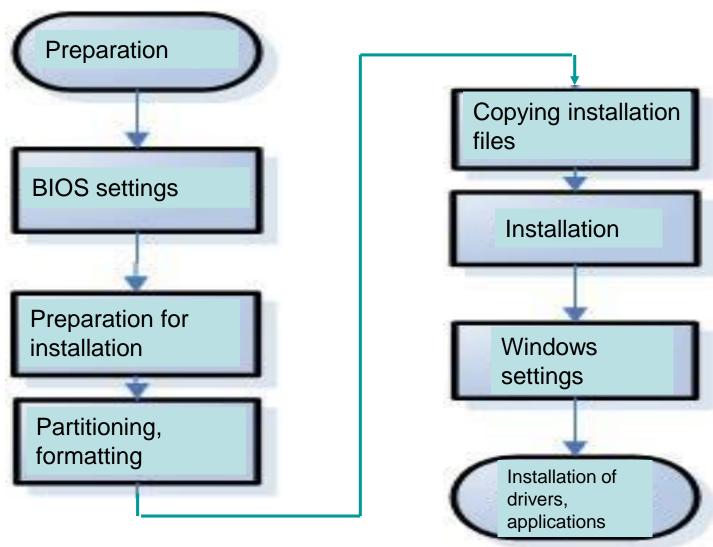

PDA

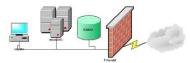
First PDA (AT&T EO440) 1993



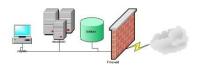
Smartphone




Tablet

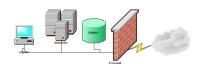


Overview



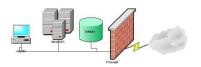
Installation

- Regional and language options
- Type in the user name/enterprise name
- Product identification key (25 char)
- Computer name
- Administrator password
- Date, time, time zone
- Network settings
- Workgroup
- Display resolution detection



Installation of Drivers, Programs

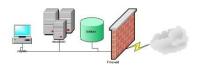
- To be able to use the hardware drivers must be installed
 - Provided by the manufacturers of the functional units
 - Most important: voice, video, network cards
- 2. For protection:
 - Anti-virus
 - Anti-spyware
 - Firewall
- What is a firewall?
 - In computer technology: Hardware and/or software protection against unauthorized electronic access to a networked computer system


Installation of Drivers, Programs

- ✓ After installing anti-virus, anti-spyware and firewall:
- Internet connection may be established
 - Why only now?
- Upgrade protection software and operating system
 - Update menu point
 - Start: Windows Update
 - Takes a time...
- 3. Network settings
 - IP address
 - Subnet mask
 - Gateway
 - DNS Server address, etc.
- 4. Install user programs

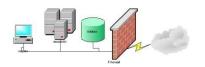
Installation of Desktops in an Enterprise Environment

- Imagine the previous process on several hundred machines...
 - Slow
 - Error prone
- On the top of all that:
 - Different user groups
 - Different programs
 - Different user profiles
- Automation needed...



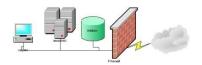
Desktops – Operation Systems

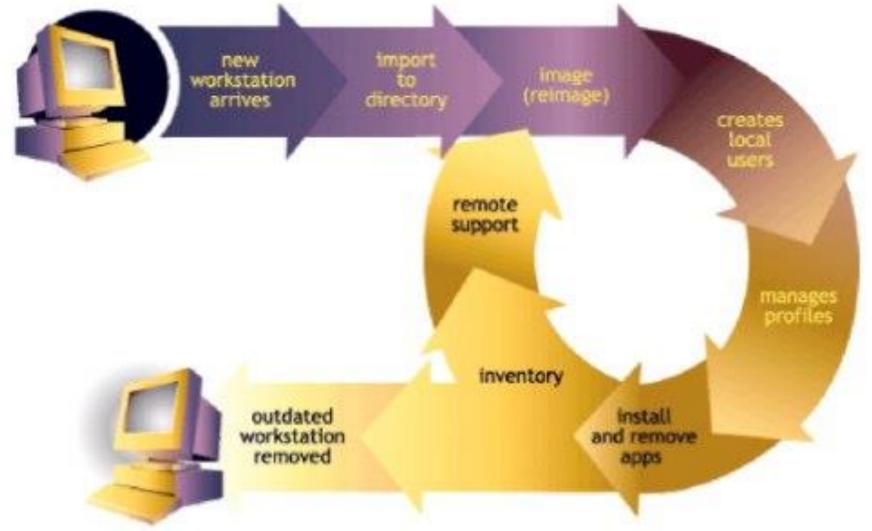
- Mainly: Pre-installed operation system
 - Problem: cannot know exactly what is installed...
 - Typically: machines are purchased continuously, not all at a time
 - What to do if a machine must be replaced promptly?
 - Purchase if the organisation is enlarged/re-organized
- Result: non-homogenous desktop and operation system set – source of errors!
- Not sure, if we can reach a homogenous desktop set if we install the machines



Management - Automation

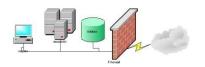
- Advisable to automate not only the installation process, but also the management
- Attach to network
 - IP address, protocols, rights
- Access to services
 - printing, e-mailing, Internet access, etc.
- Other tasks
 - Mailbox management; virus, spam, spyware protection; access to remote storage, database




Tasks of Desktop Management

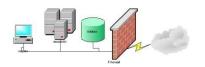
- The management of the desktops covers several issues:
 - installation and upgrade of the operation systems and applications,
 - their back-up and archivation,
 - develop and maintain a universal user interface that is used all around the company,
 - inventory of machines
- Requirement:
 - Do it with as little human's interaction as it can
 - Automation as much as possible
 - more economical
 - reduces the harms caused by human's fault.
- This whole process is called as Desktop Management.

Life cycle of a PC, typical activities to manage



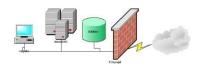
Desktop Management Services

- Creating a system image, automatic installation
- Personalized software installation, automatic application supervision, measurement of software usage (statistics)
- Policy-based desktop supervision
- Remote supervision
- Full hardware and software inventory



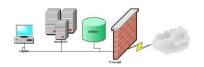
Desktop Management Services

- Creating a system image, automatic installation
- Personalized software installation, automatic application supervision, measurement of software usage (statistics)
- Policy-based desktop supervision
- Remote supervision
- Full hardware and software inventory



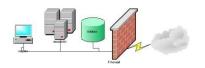
Creating a system image, & automatic installation

- Installation of new operating systems and applications on every/selected (connected or standby) computers of the company
 - from image-file
 - distribution of sample installation
- Assignments between "Application-objects" and desktops
 - Upgrades only in one place ("Application-object") and the users can see the new version immediately



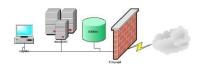
Creating a system image, & automatic installation

- "Wake On LAN"-functionality
- Automatic distribution of applications
 - to more users at same time
 - probably in a personalized form
 - condition-based
 - system image distribution before system (re)start
 - automatized online application distribution function
 - during installation desktop can be used
 - Layered Agents
 - From a central site to other sites
 - Other sites to local desktops



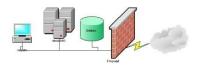
Desktop Management Services

- Creating a system image, automatic installation
- Personalized software installation, automatic application supervision, measurement of software usage (statistics)
- Policy-based desktop supervision
- Remote supervision
- Full hardware and software inventory



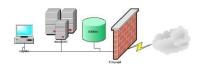
Personalized software installation

- Tasks of personalized software installation:
 - Which applications can be accessed by user
 - Outlook of the desktop (background, screensaver, etc.)
 - Who can have an access to the PC and with which rights
 - Which printers can be used
 - To whom to turn in case of a problem



Application Supervision Functions

- System images stored in a central database
 - (Automatic) Self correcting applications
 - Unintentionally deleted, damaged files, settings
- Desktop assignment functions
 - Who from where can have an access to which application
- Application removal function



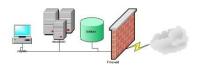
Measurement of Software Usage

- Software measurement functions
 - E.g.: Distributed applications
 - if # of licenses reached new user cannot start it
- Reports on
 - distribution
 - usageof applications



Desktop Management Services

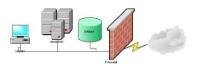
- Creating a system image, automatic installation
- Personalized software installation, automatic application supervision, measurement of software usage (statistics)
- Policy-based desktop supervision
- Remote supervision
- Full hardware and software inventory



Policy-based desktop supervision

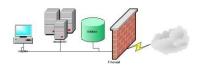
Policies

- determined of the (access) rights of users/user groups on company level
 - what can be configured
 - what can be loaded, installed
 - which SW-applications can be run
 - desktop settings
 - which network resources can be used
- rights assigned to persons not to machines
- stored in a central database
 - in case of modification automatically distributed to all concerned machines



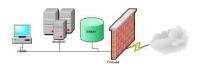
Desktop Management Services

- Creating a system image, automatic installation
- Personalized software installation, automatic application supervision, measurement of software usage (statistics)
- Policy-based desktop supervision
- Remote supervision
- Full hardware and software inventory



Remote Supervision

- Faults can be prevented, fixed
 - users are not bothered with technical questions
 - pressing "help request" e-mail to SA with the description of the error
- Remotely controllable machines
 - if entitled
- SA can control the system from anywhere (via Internet)



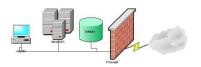
Functions of Remote Supervision

- Remote file transfer, program execution, diagnostics
- Locking/unlocking of mouse/keyboard during remote control
- Switch off display remotely
 - not to see specific remote control operations
- A "Wake on LAN" a switched-off desktop can be switched on
- Access rights can be assigned
 - by user, by groups, by departments, by sites, by desktops – according to policies
 - Restrictions even for SAs



Desktop Management Services

- Creating a system image, automatic installation
- Personalized software installation, automatic application supervision, measurement of software usage (statistics)
- Policy-based desktop supervision
- Remote supervision
- Full hardware and software inventory



Full hardware and software inventory

- Hardware inventory
- Software inventory
 - "built-in" list
 - program items/settings can be added
- Data stored in an SQL database
- Predefined / "Own" reports
 - upgrades
 - expiration of licenses
 - Path of programs-files (removal!)

Tasks of desktop inventory

- Company level inventory collection and unification of databases of sites
 - backup, automatic logging, reporting
- Collection of inventory data can be timed and automatically executed (on basis of policies)
- Mobile systems can suspend the inventory data collection when they switched off from network and resume when reconnected
- Custom Inventory custom.ini file stored on desktop
 - describes specific information about desktop (location, user, price, inventory number, etc.)
- Collection of version numbers, paths of applications. Can be used for
 - upgrades

