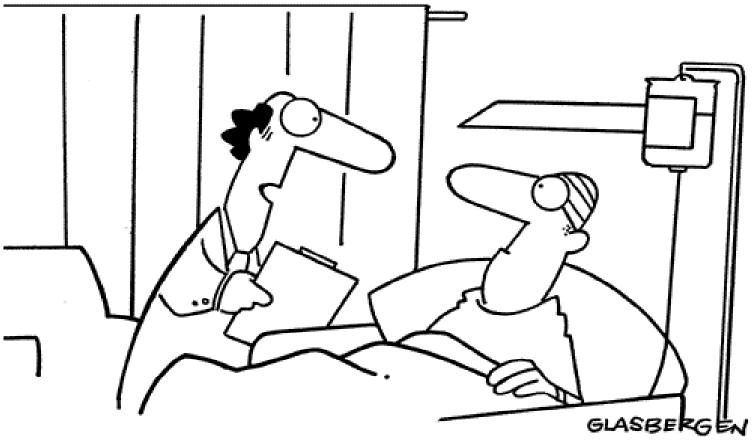
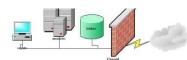
Management of Information Systems

Back-up and Restore


Back-up and Restore

- Back-up / archiving definition
- Back-up
 - Tape
 - Back-up systems
 - Back-up methods
 - Full, incremental, differential, progressive
- Archives
 - Archivation requirements
- Design of back-up
 - Example
- Restore


Back-up and Archive

© 1999 Randy Glasbergen. www.glasbergen.com

"You caught a virus from your computer and we had to erase your brain. I hope you kept a back-up copy."

Back-up and Archive

Goal of back-up / archiving: recovery safeguard, make copies for preventing data loss

Goal of back-up: guarantee business continuity

- Delete: the user accidentally / intentionally delete/overwrite
- Failure: storage device/system fails

Goal of archiving: to reproduce the entire data of a certain point in time

- with a granularity of a quarter, half, or full year
- Business, legal (determined by law) etc. reasons: data serves as an evidence, basis for a comparision, reference
- Not used data have to be deleted: maintenance / evidence(!!) / legal(!!) reasons

Tipically common base technology for back-up/archiving

Needs for Restoration

- Accidental file deletion
- Disk failure

• Archives

Accidental File Deletion

- User requirement: quick restoration
- Typical business environment:
 - Max. 1 day earlier state can be restored
 - Takes for max. 1 day to restore
 - New SW-s: users can restore on their own without the system administrator
 - But only if the tape is still in jukebox

Disk Failure

- Disk failure
 - Disk hardware failure
 - Other HW / SW failure, that causes the complete loss of disk content
- Main consequences
 - data loss
 - service interrupt
- Slow, typically several GB/TB to restore
 - Restore in several steps
 - Full back-up
 - Incremental/Differential back-ups

Archives

- Goal is different
- On technical level
 - ALWAYS full back-up
 - Archive tapes must be treated separately from "normal" back-ups – duplicating, off-site storing
 - Store at different places
 - Long life (~10 years) so not only the tapes to keep, but
 - Devices making/reading archives
 - Tools (programs)

BME VIK TMIT

Why to use tapes?

Advantages:

- Cheap
- Tapes can be taken out no continuous mechanical stress
- Long life 30 years
- Stored data can easily be deleted

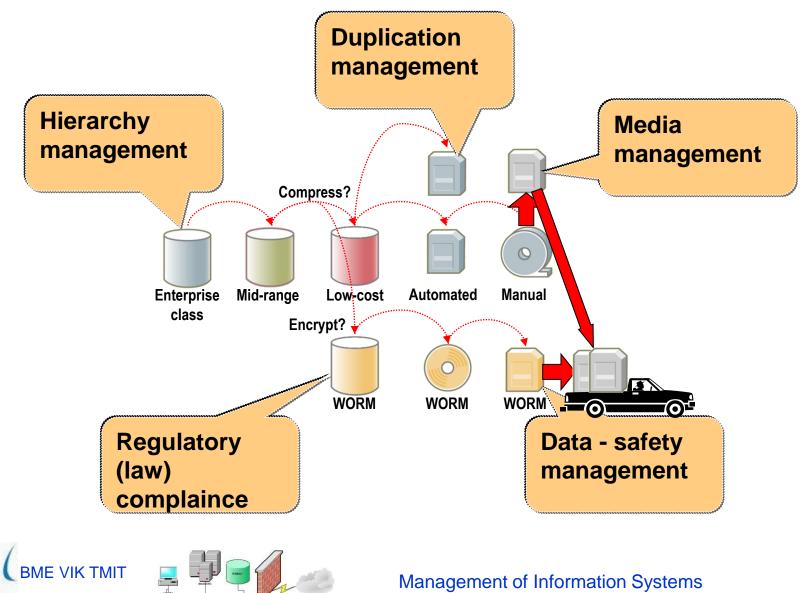
Disadvantages:

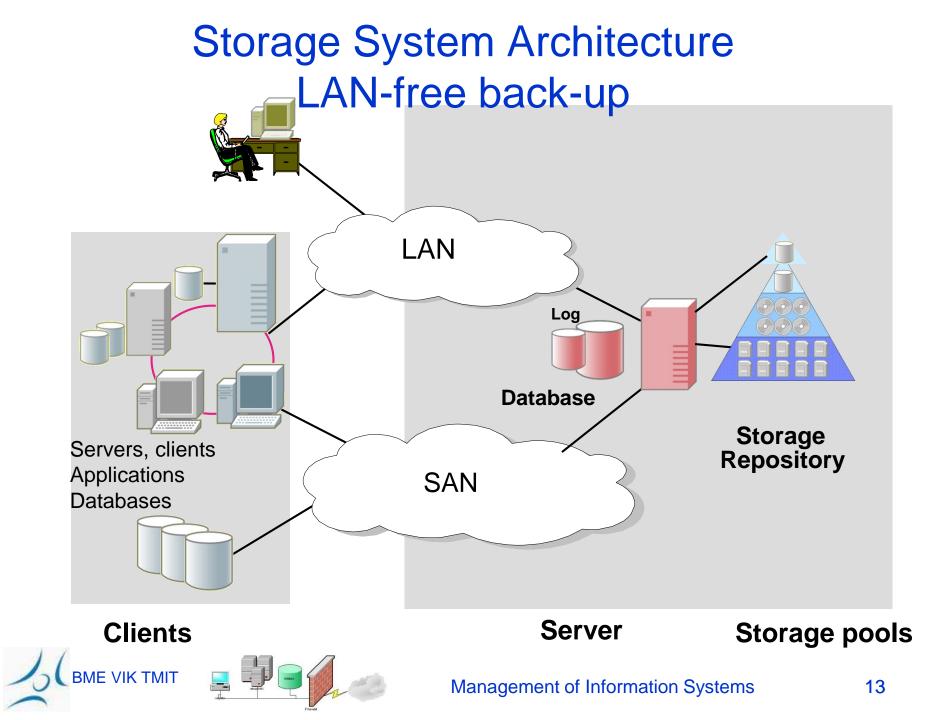
- Serial data access (slow)
- Tape insertation time
- More vulnerable

Linear Tape-Open (LTO) standard

- Tape Format Standard: IBM, HP and Certance (Seagate) cosortium
 - Open system standard technology
 - 7th generation
 - Backward compatibility
- Since coming out (2000) wide range of industrial acceptance, leading tape technology
- Actual technology: Ultrium 7
 - 2000: 100 GB
 - 2015: 6 TB (v7)
 - Since v3:WORM
 - New releases under standardisation

BME VIK TMIT




Linear Tape-Open (LTO) features

Approximate years of life assuming one tape filled... **Entire**tape Capacity Туре Year per *month* per week reads/ writes 2000 100 GB LTO-1 200 17 4 LTO-2 2003 200 GB 250 21 5 7 LTO-3 2005 400 GB 364 30 800 GB LTO-4 2007 200 17 4 2010 LTO-5 1.5 TB 200 17 4 2012 LTO-6 2.5 TB LTO-7 2015 6.0 TB

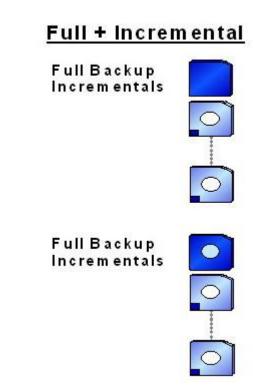
Modern Storage System Requirements

LAN-Free Back-up and Recovery

- LAN-Free client data transmission
 - Server manages the internal storage pool
 - The client moves the data from disk to tape, or to a SAN disk
 - Meta-data are moving on LAN network
 - LAN is not overloaded by heavy storage data traffic
 - Scalable

Back-up Methods

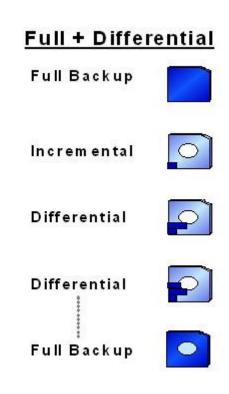
- Full back-up
- Incremental back-up
- Differential back-up
- Progressive Back-up Methodology


Full Back-up

- Save the whole disk content every day
 - Huge amount of data
 - Slow
 - Low utilisation of tapes
 - Saved many times, even if not changed
- BUT:
 - Fast restore (one tape)

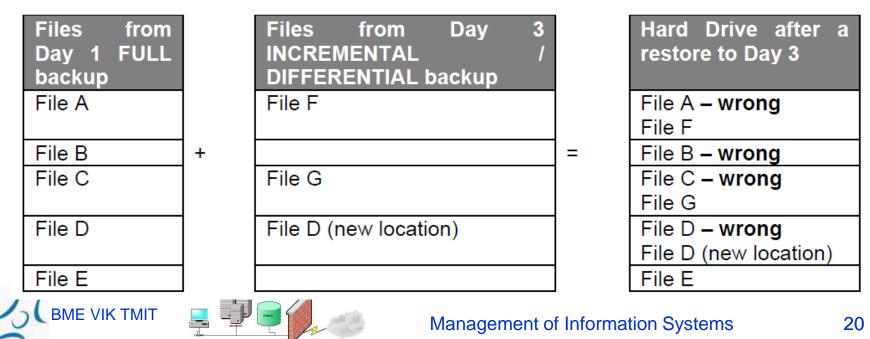
Incremental Back-up

- Full back-up only on the first day
- Then only the changes since the previous day
 - Small amount of data
 BUT:
 - Restore is slow
 - Low utilisation of tapes
 - almost empty


Differential Back-up

- Full back-up only on the first day
- Then only the changes since full back-up
 - Greater, constantly groving amount of data

BUT:


- Shorter restore time (max. 2 tapes)
- More tapes

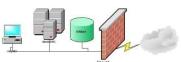
Problem of Incremental / Differential Back-up

Day 1	Day 2	Day 3	Day 4	Day 5
File A	File A renamed	File F	File F	File F deleted
	to File F			
File B	File B deleted			
File C	File C renamed	File G	File G	File G
	to File G			
File D	File D moved	File D	File D deleted	
	to new location	(new location)		
File E	File E	File E	File E	File E

Progressive Back-up Methodology

- Full back-up only once
- Then only incremental
- But back-up the file system, too
 A bit more(!) more to save
- But at restore, we can find the actual state of a file (backward search)
 - Much faster when restore files that
 - modified several times
 - deleted

Advantage of Progressive Back-up Methodology

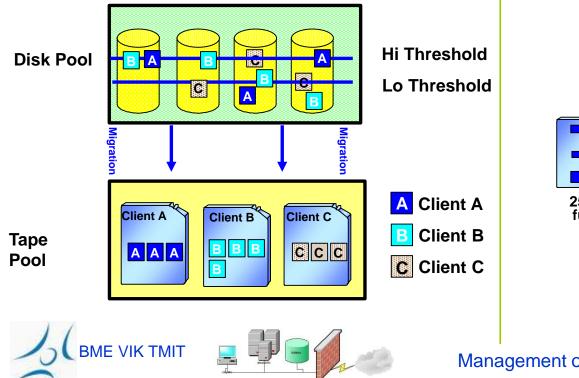

Day 1	Day 2	Day 3	Day 4	Day 5
File A	File A renamed	File F	File F	File F deleted
	to File F			
File B	File B deleted			
File C	File C renamed	File G	File G	File G
	to File G			
File D	File D moved	File D	File D deleted	
	to new location	(new location)		
File E	File E	File E	File E	File E

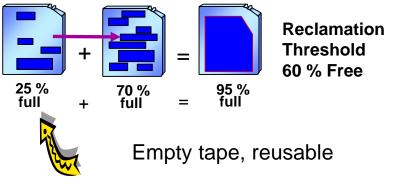
Required	
files from	
Day 1 FULL	
backup	i.
5	+
File E	

Required files from Day 2 & Day 3 INCREMENTAL backups	
File F	
File G	
File D (new location)	

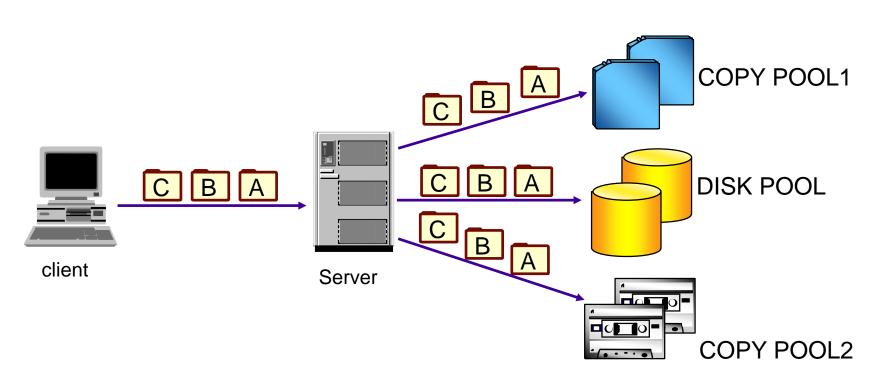
	Drive e to Da		8
File F			
File G			
File D	(new lo	cation)	
File E	<u> </u>	sd.	

Colocation and Tape Reclamation

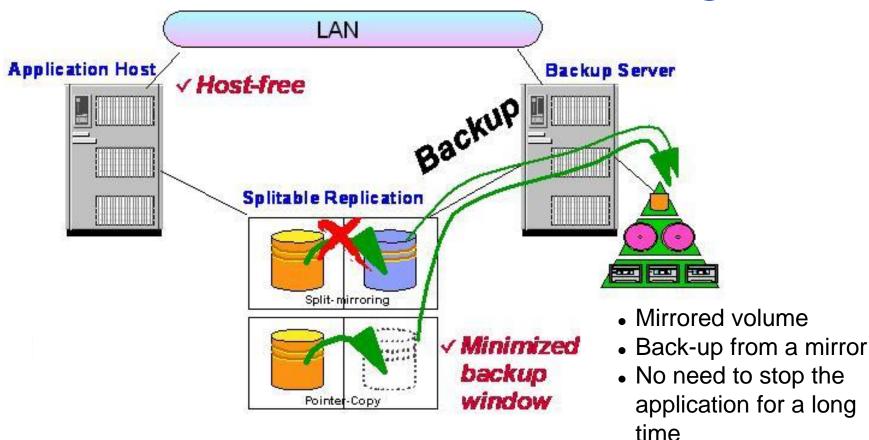

Colocation


Data of a client (group) to the same tape

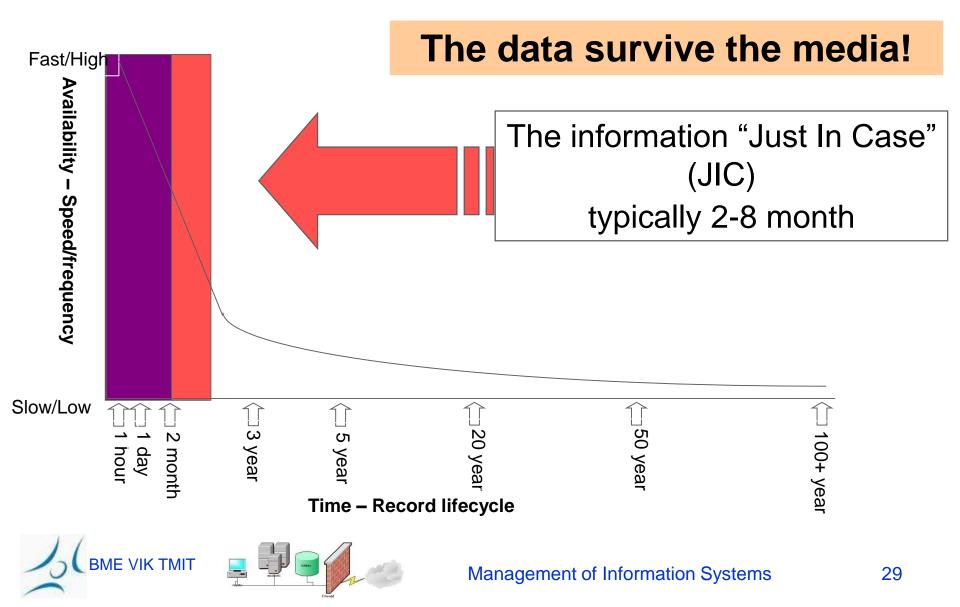
Shorter restoration, fewer tape exchange


Tape Reclamation

Copy valid data to a new tape after a user-specified threshold This copying can be timed

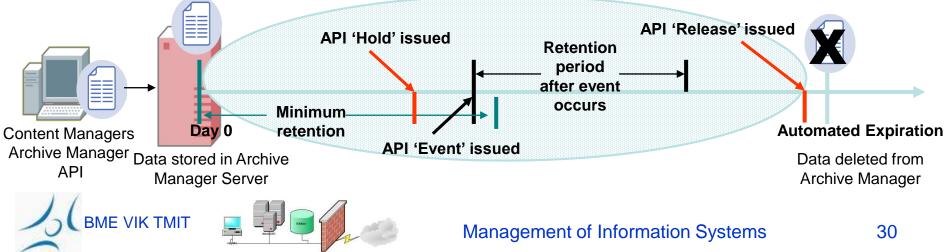

Parallel Back-up

More back-up storage pools can be defined, simultaneous writing The target storage pools can be of different types (tape, disk). Disaster tolerant systems



Zero down-time storage

The JIC Information



Special Archiving Requirements

Protect data from deletion till a predefined time / but deletes immediately after it

How to reach archiving functions

- Chronological Retention time policy:
 - Store the objects for a predefined time e.g. 3 years –
- -Event-based retention protection:
 - The storage time depends on an event e.g. 70 years after client death
- Deletion Suspend / Resume:
 - Deleting hung up of certain files-e.g. the end of action at law

Back-ups must be planned

- Not enogh: "start at midnight"
 - Several back-up types!
 - Back-up window should not be the same
 - Back-up always reduces the performance of the system
 - Do at off-peak hours
 - But when are the peak hours?
 - Back-up outsourcing can lead to problems

Plan of Back-up

- Corporate Guidelines
- Service Level Agreement (SLA)
- Back-up and Restore Policy
- Back-up Schedule

Corporate Guidelines

- Valid for the whole company
- Defines terminology and dictates requirements for data-recovery systems
 - based on legal requirements
 - types of data to back-up
- Do not deal with every specific implementation detail

Determine the SLA

- An SLA is a written document that specifies what kind of services and performance are to be provided
- Created with involving the customers
- Defines:
 - types of back-up
 - requested restoration times
 - how often to back-up
 - how long to keep back-ups
 - back-up windows

SLA Example

- Customers shall be able to get back any file
 - with a granularity of 1 business day for the past 6 months
 - with a granularity of 1 month for the last 3 years.
- Disk failures shall be restored in 4 hours, with no more than 2 days of lost data
- Archives shall be full back-ups on separate tapes generated quarterly and kept forever
- Critical data will be stored on a system that retains useraccessible snapshots made every hour from 7 AM until 7 PM, with midnight snapshots held for 1 week
- Databases and financial systems shall have higher requirements that shall be determined separately

Back-up Policy

- When SLA approved, determine the policy how to achive the requirements
- Typically obvious:
 - From SLA Example:
 - Daily back-ups
 - Tapes will be retained as specified in SLA
 - The policy determines how often full versus incremental back-ups will be performed

Back-up Schedule

- The back-up schedule lists details down to which partitions of which hosts are to be backed-up and when
- SLA changes rarely, but back-up schedule often
- Typically not written stored in the configuration of the back-up system

SLA Example - Again

- Customers shall be able to get back any file
 - with a granularity of 1 business day for the past 6 months
 - with a granularity of 1 month for the last 3 years.
- Disk failures shall be restored in 4 hours, with no more than 2 days of lost data
- Archives shall be full back-ups on separate tapes generated quarterly and kept forever
- Critical data will be stored on a system that retains useraccessible snapshots made every hour from 7 AM until 7 PM, with midnight snapshots held for 1 week
- Databases and financial systems shall have higher requirements that shall be determined separately

Preparation of Back-up Schedule

- Snapshots made by the system automatically
- Granularity of back-up is 1 business day
- Disk restore requirement 2 days back-up needed not only on business days
- Since full back-ups take significantly longer than differentials, schedule them for Friday night and let them run all the weekend.
- Sunday through Thursday nights differential back-ups are performed

Preparation of Back-up Schedule

- Today's back-up systems are automated
 - It is common to simply list all partitions that need to be backed-up
 - Software generates a schedule based on the requirements
 - The back-ups are performed automatically, and email notification is generated when tapes must be changed
- But when to perform full back-up and when differential?

Back-up Schedule Example

- Size of a partition: 4GB
- Full back-up to make: every 4 weeks (28 days)
- Suppose, size of differential back-up grows by 5% every day
 - Day1: Full back-up, 4 GB
 - Day2: 200 MB
 - Day3: 400 MB, etc.
 - Day10: 2 GB

BME VIK TMIT

- Day 11: 2.2GB
- Just these two days require more than a full back-up
- Worth perform full back-ups at every 10 day!
- But full back-up shall be on week-ends: 7, 14, 21, 28 day cycles possible
- In this example, 7 day (30%), 14 day (40%), other (~60%) tape requirement compared to everyday full back-up

Management of Information Systems

Back-up Schedule Example 2.

- Previous example is not typical
- "80/20 rule": 80% of accesses reach only 20% of data
- Suppose: 20% of data is accessed and half of it (10%) is modified daily
- First differential back-up: 10% of the partition
- Grows only by 1% daily (10% of 10%)
- Optimal 14 day cycle (~37%), 21 day (39%), 28 day (41%), 7 day (42%)

Back-up Policy – Tell to Users

- Back-ups are performed only on data stored on servers (your PC's Z: drive, or UNIX /home directory) every night between midnight and 8 AM.
- We never do back-ups of your PC's local C: drive.
- If you need a file recovered, go to [*insert URL*] for more information, or send email to "help" with the name of the server, the file's complete path, and which date you need the restore from.
- Access problems, simple restores are done in 24 hours.

Example

- We have **2TB** data on a server
- Use incremental back-up
- Change 10% / day
 - a. In case of a weekly cycle how large amount of data is to be backed up in 4 weeks?
- Full back-up: 2 TB
- Incrementals: 2TB * 10% = 0.2 TB (each day)
- One week: 2TB + 6*0.2 TB = 3.2 TB
- Four weeks: 4 * 3.2 TB = 12.8 TB

b. How large will be the back-up window if the writing capacity of the back-up device is 100 GB/h?

- Sunday (full back-up)
 - 2 TB / 100 GB/h = 20 (!!) hours
- Other days:
 - 0.2 TB / 100 GB/h = 2 hours

- c. How many devices are needed if the maximal allowed back-up window is 8 hours?
- Worst: Sunday: 20 hours
- 3 devices needed

d. How many tapes are needed if we use new tape(s) every day and the capacity of a tape is 500 GB?

Sunday: 2 TB / 500 GB = 4 tapesOther days: 0.2 TB (= 200 GB) = 1 tapeTotal: 4+6*1 = 10 tapes / week40 tapes / 4 weeks

e. Maximum how many tapes needed to restore the content of a given day?

Worst: Saturday Restore: 1 full + 6 incrementals 4 + 6*1 = 10 tapes needed

Time and Capacity Planning

- Restores and back-ups are constrained by time
- Restores need to be finished within the time permitted by the SLA
- Service may be disabled until the restore is complete
- The speed of a back-up is limited by the slowest of the following factors:
 - read performance of the disk,
 - write performance of the back-up medium,
 - bandwidth and latency of the network between the disk and the back-up medium

SLA Example - Again

- Customers shall be able to get back any file
 - with a granularity of 1 business day for the past 6 months
 - with a granularity of 1 month for the last 3 years.
- Disk failures shall be restored in 4 hours, with no more than 2 days of lost data
- Archives shall be full back-ups on separate tapes generated quarterly and kept forever
- Critical data will be stored on a system that retains useraccessible snapshots made every hour from 7 AM until 7 PM, with midnight snapshots held for 1 week
- Databases and financial systems shall have higher requirements that shall be determined separately

Tape requirement

- Back-up Policy affects the number of tapes needed
- Example:
 - tapes containing the incrementals can be reused after 6 months
 - tapes containing the full back-ups (except for the archives) can be reused after 3 years
 - Full back-ups: every 14 days
 - Archives: every 3 months

Restoration

- Slow...
- Reading and writing speed of a tape often very different + access time!!
 - Often longer than to restore a partition!
- Speed of restoration is typically determined by the writing speed of the file descriptors!!
- Tricks to perform the back-up faster (e.g. incremental back-up) makes the restore slower
- Hardware limits
 - Tape fast, if the data arrives with exactly the same speed as the writing speed...
- Fastening: typically independent, dedicated network for back-up and restore

Restoration: safety issues

- Who has the right to claim the restoration (and usage) of a given file? validation!
- File access rights change after restoration?
- File to be restored at the original place with the original access rights or at a different place with probably different access rights?
- Overwrites existing data?

Centralization

- Centralization typically reduces costs of:
 - Equipments (expensive, because require high speed and high precision mechanics and high reliability).
 - Tape replacement (expensive, because needs human's work)
- Disadvantages of distributed back-up
 - Back-up device to every server for high reliability: 2!
 - Tape replacement takes long time
- Network back-up systems
- Jukeboxs

Tape Inventory

- A set of back-up tapes with no index or inventory is only slightly more useful than no back-ups at all...
- Automatic inventory generation
 - No read every tape backward in time...
 - Partition level
 - File level fast, but large
 - (Automatic) restoration of inventory
- How to restore if the restore system fails?
 - At least minimal info on the tape itself

Fire drills

- The only time to learn the quality the back-up system is when doing a restore
 - Restoring a randomly chosen file
 - Restoring a whole disk
 - rarely needed, maybe forget how to do
 - large amount of data capacity/bandwidth is really enough?

Changes in Technology

- Technology canges are different
 - Disk: almost linear (capacity doubles in 1-1.5 years)
 - Tape: capacity remains the same for years and the big change
 - The tape units (jukeboxes) are expensive not to replace *them* often
- When new tape type comes out retain 1
 (2) pieces from the old platform!

Back-up and Restore - Summary

- Back-up / archives
- Types of back-ups

 Full, incremental, differential, progressive
- Design of back-up
 - Corporate Guidelines, SLA, Back-up policy, Back-up schedule, Time and Capacity Planning, Tape need calculation
- Restoration

