Management of Information Systems

Data Centers

Data Centers

- A data center is a facility used to house computer systems and associated components
- Nowadays, data center consisting of tens of thousands of PCs are increasingly common in universities, research labs, and companies
- Data center can be used to do scientific computing, financial analysis, data analysis and warehousing, and providing large-scale network services

Common data center topology

Multi-Tier Model

- Access
 - Where hosts connect to the network
- Aggregation
 - To which the access layer is redundantly connected
- Core
 - Provides routing services
 - "Connects DC to world outside"
 - to other parts of the data center
 - to services outside of the data center such as the Internet
 - geographically separated data centers
 - and other remote locations

Multi-Tier Model

Core

Multi-Tier Model

Multi-Tier Model

Oversubscription

- Total output bandwidth/ input bandwidth
- 2*1 Mbps / 1
 Mbps = 2
- Not likely that all bandwidth is needed at the same time

2-Tier Model

Core: 32*10G

Aggregation:

2-Tier with ToR (1RU) switches

- Core: 32*10G
- Aggregation: Top of Rack 2*10G + 48*1G
- Max: 1536
- 20/48=416M /server
- Oversubscription: 48/20=2.4

10 Gigabit Ethernet Gigabit Ethernet Scales to 32 1RU 4948 -10GE Access Nodes 10G x 2 uplinks per switch (20G) 48 Servers Per Node x32 = 1,536 Servers at Scale 20G/48=416 Mbps per Server =2.4:1 Oversubscription Ratio

BME VIK TMIT

3-Tier Model

- (2*80)/(12*48) =
 277M/server
- Overs.: 1.5*2.4=3.6

Multi-Tier Models

- Large, special routers/switches
- –> Smaller, commercial
- –> Fat Tree Topology

 1 switch: k ports

- k pods
 - 1 pod contains:
 - k/2
 - aggregate switches
 - k/2 access switches
 - (k/2)*(k/2) = (k/2)² servers
- (k/2)*(k/2) = (k/2)² core switches

k-ary fat tree:

- three-layer topology (access, aggregation and core)
- each switch has k ports (-> k pods)
 - half of them up, other half down
- each access switch connects to k/2 servers & k/2 aggregation switches
- each aggregation switch connects to k/2 access & k/2 core switches
- $(k/2)^2$ core switches: each connects to k pods
- each pod consists of (k/2)² servers & 2 layers of k/2 k-port switches
- altogether k * $(k/2)^2 = k^3/4$ servers

6-ary Fat Tree Topology

- each switch has 6 ports -> 6 pods
- each access switch connects to 6/2 = 3 servers & 6/2= 3 aggregation switches
- each aggregation switch connects to 6/2 = 3 access & 6/2 = 3 core switches
- $(6/2)^2 = 9$ core switches: each connects to 6 pods
- each pod consists of (6/2)² = 9 servers & 2 layers of 6/2 = 3
 6-port switches
- altogether: 6 * 2 * (6/2) = 36 access+aggregation switches
- altogether 6 * $(6/2)^2 = 6^3/4 = 54$ servers

64-ary Fat Tree Topology

- Number of servers?
- k * (k/2)² = k³/4 servers = 64 * 32² = 65536 servers

Evaluation of Fat Tree Topology

- Bandwidth
 - Fat tree has identical bandwidth at any bisections
 - Each layer has the same aggregated bandwidth
 - Oversubscription = 1
- Can be built using cheap devices with uniform capacity
 - Each port supports same speed as end host
 - All devices can transmit at line speed if packets are distributed uniform along available paths
- Great scalability: k-port switch supports k³/4 servers
- Smaller power consumption
 - Lower heat / air condition

Problems of the Traditional Architectures

- Change in the traffic pattern
 - Traditionally: north-south
 - Now: east-west as well
 - Why?
 - Virtualisation / Cloud
 - Any (virtual) server can be placed at any physical
 - Reallocation of workload
 - Communication is required between them: SAME speed between ANY cluster
 - Higher reliability

Full Mesh

- Typical data center switches:
 - 48 x 10GE ports and
 - 4 x 40GE ports that can be used as 16 x 10GE ports
 - Altogether 64*10GE ports
- Use:

— 3:1 вме vik тміт

- 48 ports for servers
- 16 (14) ports for intra fabric connections
- Oversubscription =

Full Mesh

BME VIK TMIT

- Though we have 140 Gbps uplink capacity, we can achieve only 20 Gbps between any two nodes
- No alternative routes
 - Error prone
- Lot of (n*(n-1)/2) links
- LAG: Link aggregation

More Efficient Architecture

BME VIK TMIT

- 160 Gbps between any two nodes
- Redundant
- BUT:
 - more switches
 - slower

Draw it in a modified way...

New trend

Clos Network / Spine and Leaf architecture

Spine and Leaf architecture

- Leaf ~ access
- Spine ~ aggregation
- But: each leaf is connected to each spine
 - Ethernet fabric
 - Maximum distance: 3 hops (4 links)

Spine and Leaf rules

 Total # of interconnections
 = #leaf * #spine

BME VIK TMIT

- #spine =
 #port_of_a_leaf
 - #port_of_a_spine
 #leaf

Typical architecture

• Leaf:

To Servers: 48 * 10 GbE portsTo Spine: 4 * 40 GbE ports

Oversubscription: 3:1

Load Balancing, Parallel Paths

- Traditional routing algorithm Spanning Tree Protocol (STP)
 - To avoid loops finds the best path to every node
 - What is the main disadvantage?
 - Only ONE path between any two nodes
- Equal-Cost Multipath (ECMP) protocol
 - Finds more paths with the same length (cost)
 - In practice typically 8 or 16
 - Load distribution
 - Higher bandwidth utilization
 - Packet reordering

- Layer 2 protocol
 - runs on bridges and switches.
 - IEEE 802.1D (original)
 - IEEE 802.1Q-2014 (incl. different new versions)
- Builds a logical loop-free topology for Ethernet networks

- Select a root bridge/switch
 - With smallest ID
 - ID: priority
 (default 32768) +
 MAC address
 - Good if central, no end station connected (backbone switch)

- Least cost path from each bridge
 - Bridge protocol data units (BPDUs) transmitted by root with cost=0
 - Others increment cost by the cost of incoming link (all the same on the figure)
 - Find the smallest
 - Root Port (RP)

BME VIK TMIT

 When tie: from bridge with smaller ID

Default costs

Data rate	STP cost (802.1D-1998)	RSTP cost (802.1W- 2004, default value)
4 Mbit/s	250	5,000,000
10 Mbit/s	100	2,000,000
16 Mbit/s	62	1,250,000
100 Mbit/s	19	200,000
1 Gbit/s	4	20,000
2 Gbit/s	3	10,000
10 Gbit/s	2	2,000

1 Gigabit/second/bandwidth 20 Terabit/second/bandwidth

- Least cost path from each network segment
 - Bridge with the leastcost path from the network segment to the root
 - Designated *port* (DP) for the segment
 - When tie: from
 bridge with smaller
 ID (see d)

- The DPs will be set to forwarding mode
- The rest: blocked (BP)

At link failure:
 – reconfiguration

Equal-Cost Multi-Path (ECMP)

- For Layer2 and Layer3
- If n path exist between two nodes
 - Modulo n hash algorithm used to select
 - ~ remainder at division
 - Different hash algorithms
 - From header
 - Source/destination MAC/port
 - Source/destination IP+port and Protocol number
 - To direct same TCP stream onto the same link

ECMP

High Performance Clusters (HPC)

- Clusters have common goal
 - Combining multiple CPUs
 - To appear as a unified, high performance system
 - High Availability
 - Load Balancing
 - Increased Computing Power
- E.g.:
 - Meteorology (weather simulation)
 - Military research
 - Financial trending analysis
 - Film animation
 - Manufacturing (automotive/aircraft design, aerodynamic simulation)

HPC types

- Type 1 (tightly coupled)
 - Parallel message passing
 - Applications runs on each node in parallel
 - A Master Node determines the input for each node
 - Communication between nodes
- Type 2

BME VIK TMIT

- Distributed I/O processing
 - E.g.: search engines
 - Master Node sprayes the request
- Type 3 (loosely coupled)
 - Parallel file processing
 - Source file divided up and distributed for manipulation in parallel

Logical view of a Server Cluster

Evaluation of Spine and Leaf

- Advantages:
 - Supports east-west traffic
 - Supports virtualization (cloud)
 - High and uniform east-west (inter-cluster) speed
 - Uses all interconnection links
 - Spanning Tree Protocol (STP) -> Equal-Cost Multipath Protocol (ECMP)

Evaluation of Spine and Leaf

- Advantages:
 - Uniform switches
 - Fix configuration switches
 - Smaller power consumption
 - Inexpensive devices -> high performance, reliable construct
 - If a switch/link fails, only slightly degrades the performance

Evaluation of Spine and Leaf

- Disadvantages:
 - More switches
 - Number of ports of a switch limits the scale
 - More cables
 - When adding a new spine new cables from all leafs
 - Long cables
 - Fibre optic, optical modules (expensive)
 - Instead of coaxial cables (only for short distance, but cheap)

Demilitarized Zones

- Hosts most vulnerable to attack: provide services to users outside LAN
 - E-mail, web, DNS, FTP, VoIP, ...
 - Place them in a separate subnetwork Demilitarized zone (DMZ) or Perimeter Network
 - More secure than Internet, less secure than Intranet
 - Hosts in DMZ have limited connectivity to (some) internal servers and reduced/controlled communication to Internet
 - Firewall(s)
 - Protects against external attacks, but does not deal with internal attacks

Proxy Servers

- In DMZ
 - Obliges (internal) users to use the proxy to Internet
 - Security
 - Monitoring
 - Centralized web content filtering
 - Reduces Internet traffic caching

Reverse Proxy Servers

 Provides indirect access for an external network to internal resources

- To read e-mails from outside the company

- Only the reverse proxy server can have an access to mail server
- Extra layer of security
- Typically by an application layer firewall

DMZ architecture I.

- Single firewall three legged model
 - Handles traffic between
 DMZ-Intranet and DMZ Internet
 - Single point of failure

DMZ architecture II.

- Dual firewall
 - Front-end/Perimeter
 - Back-end/Internal
- Typically from different vendors
 - Not the same security holes
 - Not the same configuration methods
 - More expensive

BME VIK TMIT

HTTP-based Applications I.

- 3 tiers
 - Web servers
 - Application servers
 - Database servers
- Separated by firewalls

HTTP-based Applications II.

- Integrated Service Modules
 - Router/switch
 - Firewall
 - Load balancing
 - Security
 - IDS (Intrusion
 Detection System)

HTTP-based Applications III.

- Logical segregation
 - With VLANs
 - Reduced performance
 - But fewer devices
- + Database
 servers typically
 physically
 separated

Data Center Overlook

Colocation Room (Colo)

- Place where the customers can place their equipment "carrier hotel"
 - Closed rooms
 - Cages
 - Racks (lockable)
 - Device owned by the customer
 - Data Center provides the operation / maintenance
 - Space, power, cooling, physical security
 - Connections to telecommunications and network service providers

Caged Colocation Room

Rack Colocation Room

Staging Room

- Equipment
 - Packing / unpacking
 - Verification tests
 - Configuration
- Outside the DC

Data Center Services

- Colocation / Server rental
- 24/7 supervision
- High reliable environment
 - georedundancy
- Operation
- Design and implementation of movement
- Data back-up and restoration
- Achivation

Data Center Services

- Redundant power supply from two different systems
- Redundant transformers
- Redundant diesel generator
 Automatic switching
- DC, n+1 redundant

- HVAC, n+1 redundant
- Raised floor, cable tables
- Redundant fibre optic ring