
Hálózatba kapcsolt erőforrás
platformok és alkalmazásaik
Simon Csaba
TMIT
2019

• Apache top level project, open-source implementation of
frameworks for reliable, scalable, distributed computing
and data storage

• Java-based framework of tools for storage and large-
scale processing of data sets on clusters of hardware

• It is a flexible and highly-available architecture for large
scale computation and data processing on a network of
commodity hardware

What is Hadoop?
3

What is Hadoop?
• Hadoop

• an open-source software framework that supports data-
intensive distributed applications, licensed under the Apache
v2 license.

• Goals / Requirements
• Abstract and facilitate the storage and processing of large

and/or rapidly growing data sets
• Structured and non-structured data
• Simple programming models

• High scalability and availability
• Use commodity (cheap!) hardware with little redundancy
• Fault-tolerance
• Move computation rather than data

4

Hadoop’s Developers
Doug Cutting

2005: Doug Cutting and Michael J. Cafarella developed
Hadoop to support distribution for the Nutch search
engine project.

The project was funded by Yahoo.

2006: Yahoo gave the project to Apache
Software Foundation.

Google Origins
2003

2004

2006

6

Hadoop framework – the layers
• Hadoop framework consists on two main layers

▫ Execution engine (MapReduce)
▫ Distributed file system (HDFS)

8

Hadoop Master/Slave Architecture
• Hadoop is designed as a master-slave architecture

9

Master node (single node)

Many slave nodes

Hadoop’s Architecture: MapReduce Engine 10

Hadoop’s MapReduce Architecture
MapReduce Engine:

• JobTracker & TaskTracker

• JobTracker splits up data into smaller tasks(“Map”) and sends it to
the TaskTracker process in each node

• TaskTracker reports back to the JobTracker node and reports on job
progress, sends data (“Reduce”) or requests new jobs

11

The MapReduce Limitations

vScalability
vMaximum Cluster Size – 4000 Nodes
vMaximum Concurrent Tasks – 40000
vCoarse synchronization in Job Tracker
vSingle point of failure
vFailure kills all queued and running jobs
vJobs need to be resubmitted by users
vRestart is very tricky due to complex state

12

Hadoop’s own filesystem
• The Hadoop Distributed File System (HDFS) is a distributed file system

designed to run on commodity hardware.
• It has many similarities with existing distributed file systems. However,

the differences from other distributed file systems are significant.

▫ Highly fault-tolerant and is designed to be deployed on low-cost
hardware.

▫ Provides high throughput access to application data and is suitable for
applications that have large data sets.

▫ Relaxes a few POSIX requirements to enable streaming access to file
system data.

▫ Part of the Apache Hadoop Core project
http://hadoop.apache.org/core/

14

MapReduce with HDFS
• Distributed, with some centralization
• Main nodes of cluster are where most of the computational

power and storage of the system lies
• Main nodes run TaskTracker to accept and reply to MapReduce

tasks, and also DataNode to store needed blocks closely as
possible

• Central control node runs NameNode to keep track of HDFS
directories & files, and JobTracker to dispatch compute tasks to
TaskTracker

• Written in Java, also supports Python and Ruby

HDFS properties
• Hadoop Distributed Filesystem
• Tailored to needs of MapReduce
• Targeted towards many reads of filestreams
• Writes are more costly
• High degree of data replication (3x by default)
• No need for RAID on normal nodes
• Large blocksize (64MB)
• Location awareness of DataNodes in network

HDFS Name Node
• Stores metadata for the files, like the directory structure of a

typical FS.

• The server holding the NameNode instance is quite crucial, as
there is only one.

• Transaction log for file deletes/adds, etc. Does not use
transactions for whole blocks or file-streams, only metadata.

• Handles creation of more replica blocks when necessary after a
DataNode failure

HDFS Data Node
• Stores the actual data in HDFS

• Can run on any underlying filesystem (ext3/4, NTFS, etc)

• Notifies NameNode of what blocks it has

• NameNode replicates blocks 2x in local rack, 1x elsewhere

Does Hadoop require HDFS?
• Errr, actually…

• None of these components are necessarily limited to using
HDFS

• Many other distributed file-systems with quite different
architectures work

• IF Hadoop knows which hosts are closest to the data THEN
reduces network traffic

• Many other software packages besides Hadoop's MapReduce
platform make use of HDFS

19

Forrás: M. Eltabakh, Hadoop/MapReduce Computing Paradigm

Store the data: HDFS

21

Centralized namenode
- Maintains metadata info about files

Many datanode (1000s)
- Store the actual data
- Files are divided into blocks
- Each block is replicated N times

(Default = 3)

File F 1 2 3 4 5

Blocks (64 MB)

Map-Reduce Execution Engine - Color Count
22

Shuffle & Sorting
based on k

Reduce

Reduce

Reduce

Map

Map

Map

Map

Input blocks
on HDFS

Produces (k, v)
(, 1)

Parse-hash

Parse-hash

Parse-hash

Parse-hash

Consumes(k, [v])
(, [1,1,1,1,1,1..])

Produces(k’, v’)
(, 100)

Users only provide the “Map” and “Reduce” functions

Properties of MapReduce Engine
• Job Tracker is the master node (runs with the namenode)

▫ Receives the user’s job
▫ Decides on how many tasks will run (number of mappers)
▫ Decides on where to run each mapper (concept of locality)

23

• This file has 5 Blocks à run 5 map tasks

• Where to run the task reading block “1”
• Try to run it on Node 1 or Node 3

Node 1 Node 2 Node 3

Properties of MapReduce Engine
• Task Tracker is the slave node (runs on each datanode)

▫ Receives the task from Job Tracker
▫ Runs the task until completion (either map or reduce task)
▫ Always in communication with the Job Tracker reporting progress

24

Reduce

Reduce

Reduce

Map

Map

Map

Map

Parse-hash

Parse-hash

Parse-hash

Parse-hash

In this example, 1 map-reduce
job consists of 4 map tasks
and 3 reduce tasks

Key-Value Pairs
• Mappers and Reducers are users’ code (provided functions)
• Just need to obey the Key-Value pairs interface
• Mappers:

▫ Consume <key, value> pairs
▫ Produce <key, value> pairs

• Reducers:
▫ Consume <key, <list of values>>
▫ Produce <key, value>

• Shuffling and Sorting:
▫ Hidden phase between mappers and reducers
▫ Groups all similar keys from all mappers, sorts and passes them to a

certain reducer in the form of <key, <list of values>>

25

MapReduce Phases

26

Deciding on what will be the key and what will be the valueè
developer’s responsibility

Color Filter
27

Job: Select only the blue and the green colors
Input blocks
on HDFS

Map

Map

Map

Map

Produces (k, v)
(, 1)

Write to HDFS

Write to HDFS

Write to HDFS

Write to HDFS

• Each map task will select only
the blue or green colors

• No need for reduce phasePart0001

Part0002

Part0003

Part0004

That’s the output file, it
has 4 parts on probably 4
different machines

Hadoop proposal: YARN

vYet Another Resource Negotiator
vYARN Application Resource Negotiator(Recursive

Acronym)
vRemedies the scalability shortcomings of “classic”

MapReduce
vIs more of a general purpose framework of which classic

mapreduce is one application.

29

YARN
v Split up the two major responsibilities of the JobTracker/TaskTracker into separate

entities
v JobTracker
v global Resource Manager - Cluster resource management
v per application Application Master – doing job scheduling and monitoring,

negotiating the resource containers from the Scheduler, tracking their status and
monitoring for progress

v TaskTracker
v new per-node slave Node Manager (NM) - responsible for launching the

applications’ containers, monitoring their resource usage (cpu, memory, disk,
network) and reporting to the Resource Manager

v (a per-application Container running on a NodeManager)
v YARN maintains compatibility with existing MapReduce applications and users

30

31

32

Comparing YARN with MapReduce
33

Criteria YARN MapReduce

Type of processing

Real-time, batch,
interactive
processing with
multiple engines

Silo & batch
processing with
single engine

Cluster resource
optimization

Excellent due to
central resource
management

Average due to fixed
Map & Reduce slots

Suitable for
MapReduce & Non
– MapReduce
applications

Only MapReduce
applications

Managing cluster
resource Done by YARN Done by JobTracker

YARN advantage over MapReduce
vSupport for programming paradigms other than MapReduce

(Multi tenancy)
vTez – Generic framework to run a complex DAG
vHBase on YARN (HOYA)
vCompute engine (e.g., Machine Learning): Spark
vGraph processing: Giraph
vReal-time processing: Apache Storm
vEnabled by allowing the use of paradigm-specific application

master
vRun all on the same Hadoop cluster!

34

35

Hadoop Framework Tools 36

Hadoop Subprojects - Summary
• Pig

▫ High-level language for data analysis
• HBase

▫ Table storage for semi-structured data
• Zookeeper

▫ Coordinating distributed applications
• Hive

▫ SQL-like Query language and Metastore
• Mahout

▫ Machine learning

37

Tez on YARN
vHindi for speed
vProvides a general-purpose, highly customizable framework that

creates simplifies data-processing tasks across both small scale (low-
latency) and large-scale (high throughput) workloads in Hadoop.

vGeneralizes the MapReduce paradigm to a more powerful
framework by providing the ability to execute a complex DAG

vEnables Apache Hive, Apache Pig and Cascading can meet
requirements for human-interactive response times and extreme
throughput at petabyte scale

38

Tez on YARN
vOriginal MapReduce requires disk I/O after each stage
vA series of MapReduce jobs following each other would result in lots

of I/O
vTez eliminates these intermediate steps, increasing the speed and

lowering the resource usage

Subash D’Souza, Hadoop 2.0 and YARN

39

Tez on YARN
vPerformance gains over Mapreduce
vEliminates replicated write barrier between successive

computations
vEliminates job launch overhead of workflow jobs
vEliminates extra stage of map reads in every workflow

job
vEliminates queue and resource contention suffered by

workflow jobs that are started after a predecessor job
completes

40

HBase on YARN(HOYA)

vBe able to create on-demand HBase clusters easily -by and or in
apps
vWith different versions of HBase potentially (for testing etc.)

vBe able to configure different HBase instances differently
vFor example, different configs for read/write workload

instances
vBetter isolation
vRun arbitrary co-processors in user’s private cluster
vUser will own the data that the hbase daemons create

41

HBase on YARN(HOYA)

vMR jobs should find it simple to create (transient) HBase clusters
vFor Map-side joins where table data is all in HBase, for

example
vElasticity of clusters for analytic / batch workload processing
vStop / Suspend / Resume clusters as needed
vExpand / shrink clusters as needed

vBe able to utilize cluster resources better
vRun MR jobs while maintaining HBase’s low latency SLAs

42

43

Apache Spark
44

• An Apache Foundation open source project. Not a
product.

• Standalone generic BigData computational framework
▫ Both batch and streaming mode

• An in-memory compute engine that works with data
• Not a data store

• Enables highly iterative analysis on large volumes
of data at scale

• Unified environment for data scientists, developers
and data engineers

• Radically simplifies process of developing intelligent
apps fueled by data

• Can be combined with Hadoop
▫ But can work without Hadoop, too: e.g., Kubernetes

45

Key reasons for Spark
46

High Performance § In-memory architecture greatly reduces disk I/O
§ Anywhere from 20-100x faster for common tasks

Productive § Concise and expressive syntax, especially compared
to prior approaches (up to 5x less code)

§ Single programming model across a range of use
cases and steps in data lifecycle

§ Integrated with common programming
languages – Java, Python, Scala

§ New tools continually reduce skill barrier for access
(e.g. SQL for analysts)

Leverages existing
investments

§ Works well within existing Hadoop ecosystem

Improves with age § Large and growing community of contributors
continuously improve full analytics stack and extend
capabilities

S. Pandey: Spark as a Service, IBM Cloud Data Services

Spark components

47

• Resilient Distributed Dataset (RDD)
• The primary data abstraction and the core of Spark
• Resilient and distributed collection of records spread over many partitions
• Shuffling: redistributing data across partitions

• Stage
• Physical unit of execution

Spark terminology

48

49

Spark / cluster mode deployment

spark_submit

Static Spark on Kubernetes
50

Kubernetes is the new YARN (for Spark)
51

Spark on K8S

52

Spark on K8s + HDFS
• No YARN, no data locality?

53

Spark on K8s + HDFS

• K8s master provides an API to match executor and datanode host IDs
(IP, label)

54

The effect of data locality

55

SparkPI example over Kubernetes
56

Pi számítása BigData klaszterben

Pi számítása BigData klaszterben

58

RealTime data processing: Batch vs. Streaming

• Apache Storm

• Spark Streaming

• (message queuing: Kafka)
• (RPC: gRPC)

59

