Hálózatba kapcsolt erőforrás platformok és alkalmazásaik

Simon Csaba TMIT 2020

.....

Motivation

- Process lots of data
 - Google processed about 24 petabytes of data per day in 2009.
- A single machine cannot serve all the data
 - You need a distributed system to store and process **in parallel**
- Parallel programming?
 - Threading is hard!
 - How do you facilitate communication between nodes?
 - How do you scale to more machines?
 - How do you handle machine failures?

BIGDATA?

What is **BigData**?

"Big Data" exceeds the capacity of traditional analytics and information management paradigms across what is known as the 4 V's: Volume, Variety, Velocity, and Veracity

Uncertainty of Data

With exponential increases of data from unfiltered and constantly flowing data sources, data quality often suffers and new methods must find ways to "sift" through junk to find meaning PwC

The speed at which data is generated and used. New data is being created every second and in some cases it may need to be analyzed just as quickly

Represents the diversity of the data. Data sets will vary by type (e.g. social networking, media, text) and they will vary how well they are structured Volume

Reflects the size of a data set. New information is generated daily and in some cases hourly, creating data sets that are measured in terabytes and petabytes

The Promise of Big Data

Even more important than its definition is what Big Data promises to achieve: *intelligence in the moment*.

	Traditional Techniques & Issues	Big Data Differentiators		
Vera city	["] Does not account for biases, noise and abnormality in data	 "Data is stored, and mined meaningful to the problem being analyzed "Keeps data clean and processes to keep 'dirty data' 		
Velo city	″No real time analysis	from accumulating in your systems In real-time: <i>Dynamically analyze data</i> <i>Consistently integrate new information</i>		
Var iety	"Compatibility issues "Advanced analytics struggle with non-numerical data	 "Auto deletes unwanted to ensure optimal storage "Frameworks accommodate varying data types and data models "Insightful analysis with very few parameters 		
Vol.	 "Analysis is limited to small data sets "Analyzing large data sets = High Costs & High Memory 	"Scalable for huge amounts of multi-sourced data "Facilitation of massively parallel processing "Low-cost data storage		

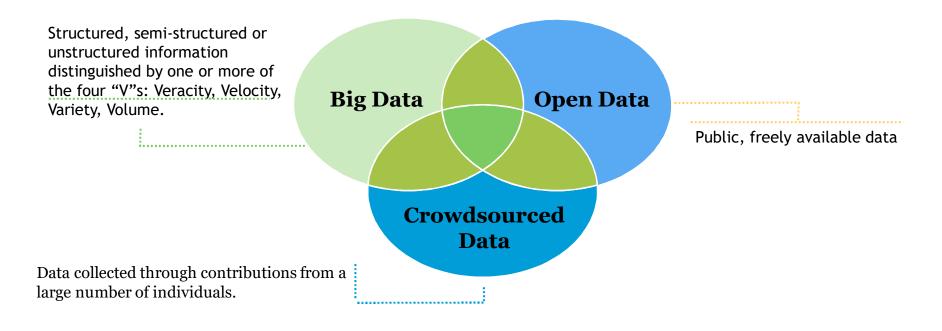
PwC

Types of Big Data

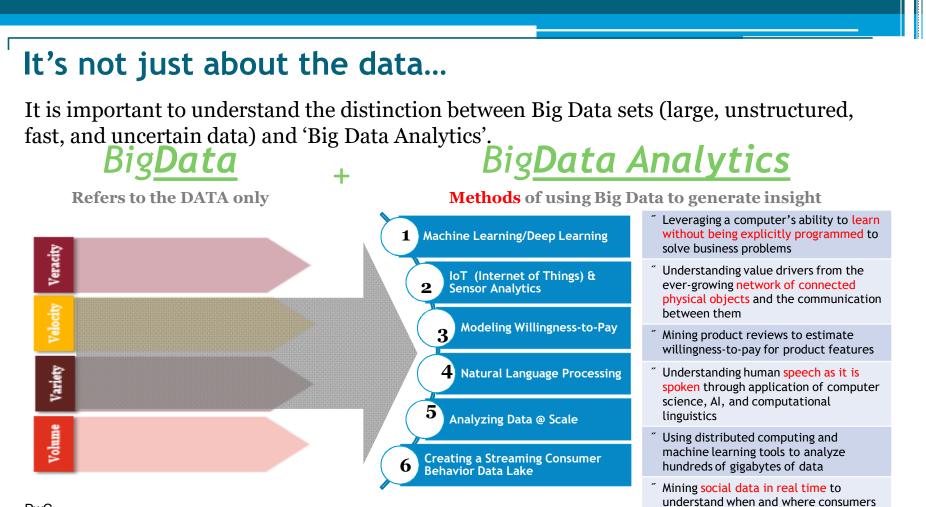
Variety is the most unique aspect of Big Data. New technologies and new types of data have driven much of the evolution around Big Data.

"Single sources of data are no longer sufficient to cope with the increasingly complicated problems in many policy arenas." ¹

Big data "is not notable because of its size, but because of its relationality to other data. Due to efforts to mine and aggregate data, Big Data is fundamentally networked."²


(1) M. Milakovich, "Anticipatory Government: Integrating big data for Smaller Government", in Oxford Internet Institute "Internet, Politics, Policy 2012" Conference, Oxford, 2012 (2) D. Boyd and K. Crawford, "Six Provocations for big data," in A Decade in Internet Time: Symposium on the Dynamics of the Internet and Society, 2011 PwC

Why is BigData valuable?


We have identified 5 key areas where Big Data is uniquely valuable:

Accessibility to Data	Enhanced visibility of relevant information and better transparency to massive amounts of data. Improved reporting to stakeholders.		
Decision Making	Next generation analytics can enable automated decision making (inventory management, financial risk assessment, sensor data management, machinery tuning).		
Marketing Trends	Segmentation of population to customize offerings and marketing campaigns (consumer goods, retail, social, clinical data, etc).		
Performance Improvement	Exploration for, and discovery of, new needs, can drive organizations to fine tune for optimal performance and efficiency (employee data).		
New Business Models/Services	Discovery of trends will lead organizations to form new business models to adapt by creating new service offerings for their customers. Intermediary companies with big data expertise will provide analytics to 3 rd parties.		

Not to be confused with...

Graphic and definitions based on "Big Data in Action for Development," World Bank, worldbank.org PwC

are making choices

PwC

... It's also about what, how, and why you use it

BigData Analytics – the process of harnessing Big Data to yield actionable insights – is a combination of five key elements:

Decisions	Analytics	Data	Technology	Mindset & Skills
The value of Big Data Analytics is driven by the unique decisions facing leaders, companies, and countries today. In turn, the type, frequency, speed, and complexity of decisions drive how Big Data Analytics is deployed.	To leverage the variety and volume of Big Data while managing its volatility, advanced analytical approaches are necessary, such as natural language processing, network analysis, simulative modeling, artificial intelligence, etc.	Big Data Analytics is about operationalizing new and more data, but it is also about data quality, data interoperability, data disaggregation, and the ability to modularize data structures to quickly absorb new data and new types of data.	To store, manage, and use Big Data often requires investments in new technologies and data processing methods, such as distributed processing (e.g., Hadoop), NoSQL storage, and Cloud computing.	Big Data Analytics requires firm commitment to using analytics in decision- making; a decisive mentality capable of employing in-the- moment intelligence; and investment in analytical technology, resources, and skills.

BigData Analytical Capabilities

Continuing increases in processing capacity have opened the door to a range of advanced algorithms and modeling techniques that can produce valuable insights from Big Data.

Unstructured Structured **Time Series Signal Analysis Cluster Analysis** Traditional Regression Analysis Distinguish between Discover meaninaful Discover relationships Discover relationships noise and meaninaful groupings of data between variables information points over time A/B/N Testing Simulation **Spatial Analysis** Classification Experiment to find the Modeling Extract geographic or most effective Organize data points Experiment with a topoloaical variation of a website, into known categories system virtually information product, etc Visualization **Complex** Event **Predictive** Sentiment Analysis Use visual *Modeling* **Processing** Extract consumer representations of Combine data sources reactions based on Use data to forecast or Emerging data to find and infer behavior to recognize events social media behavior communicate info Deep QA Natural Language **Optimization** Network Analysis **Processing** Find answers to Improve a process or Discover meaningful human questions Extract meaning from function based on nodes and using artificial human speech or criteria relationships on intelligence writing networks PwC

Forward-Looking vs. Rear-View Analytics

Big Data Analytics improves the speed and efficiency with which we understand the past, and opens up entirely new avenues for preparing for and adapting to the future.

Re	Rear-view		Forward-looking		
			Prescriptive Analytics What should be	Continuous Analytics How do we adapt to change?	
	Diagnostic Analytics	Predictive Analytics What could happen?	done? Recommend 'right' or optimal actions or	Monitor, decide, and act autonomously or semi-autonomously	
Descriptive Analytics What happened? Describe, summarize	Why did it happen? Identify causes of	Predict future outcomes based on the	<i>decisions</i> ″ Real-time product and	" Monitor results on a continuous basis	
What happened? Describe, summarize and analyze historical data " Observed behavior or events " Non-traditional data	<i>trends and outcomes</i> <i>"</i> Observed behavior or events	<i>past</i> ["] Forward-looking view of current and future value ["] Sentiment Scoring	service propositions (graph analysis, entity resolution on data lakes to infer present customer need)	["] Dynamically adjust strategies based on changing environmer and improved predictions	
events ["] Non-traditional data sources such as social listening and web crawling	sources such as social listening and web	[‴] Graph analysis and Natural Language Processing to identify hidden relationships and themes	 Rapid evaluation of multiple 'what-if' scenarios Optimization decisions and actions 	⁷ Agent-based and dynamic simulation models, time-series analysis	
/C	" Dynamic visualization	[″] Dual objective models [″] Behavioral economics Ophistication of Data		13	

creasing Sophistication of Data & Analytics

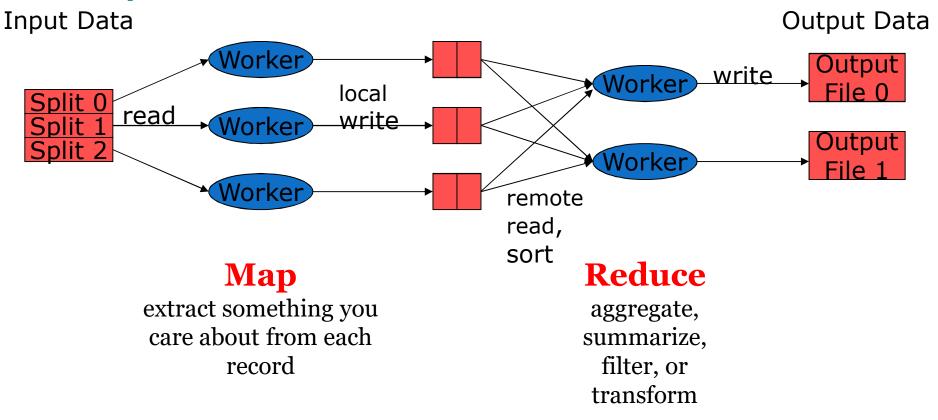
MAPREDUCE

THE BIRTH OF BIGDATA TECHNOLOGY

MapReduce

- MapReduce [OSDI'04] provides
 - Automatic parallelization, distribution
 - I/O scheduling
 - Load balancing
 - Network and data transfer optimization
 - Fault tolerance
 - Handling of machine failures
- Need more power: Scale out, not up!
 - Large number of **commodity servers** as opposed to some high end specialized servers

Apache Hadoop:


Open source implementation of MapReduce

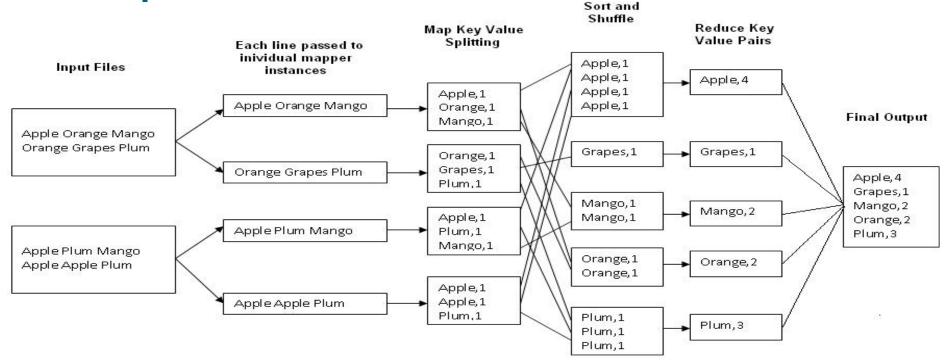
Typical problem solved by MapReduce

16

- Read a lot of data
- Map: extract something you care about from each record
- Shuffle and Sort
- Reduce: aggregate, summarize, filter, or transform
- Write the results

MapReduce workflow

Mappers and Reducers


- Need to handle more data? Just add more Mappers/Reducers!
- No need to handle multithreaded code 😳
 - Mappers and Reducers are typically single threaded and deterministic

18

- Determinism allows for restarting of failed jobs
- Mappers/Reducers run entirely independent of each other
 - In Hadoop, they run in separate JVMs

19

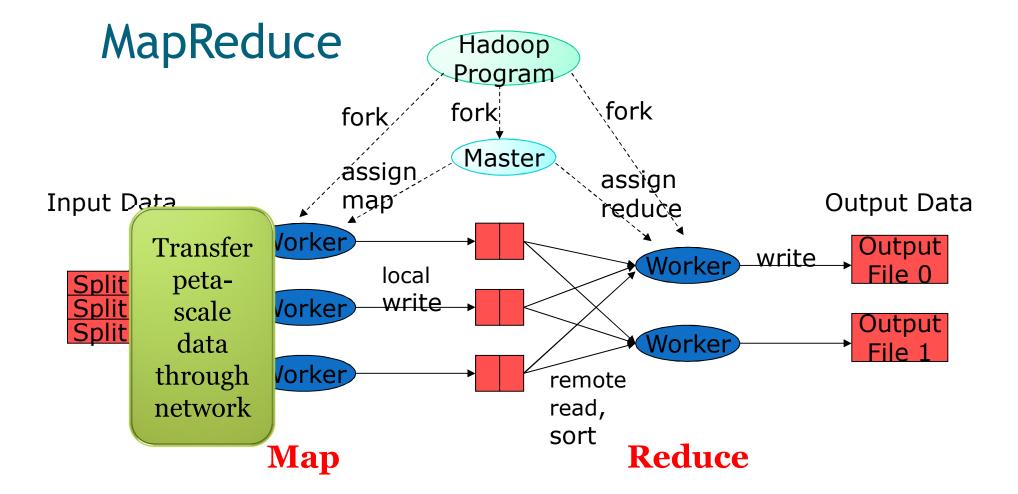
Example: Word Count

http://kickstarthadoop.blogspot.ca/2011/04/word-count-hadoop-map-reduce-example.html

Mapper

- Reads in input pair <Key,Value>
- Outputs a pair <K', V'>
 - Let's count number of each word in user queries (or Tweets/Blogs)
 - The input to the mapper will be <queryID, QueryText>:
 <Q1, "The teacher went to the store. The store was closed; the store opens in the morning. The store opens at 9am." >
 - The output would be:

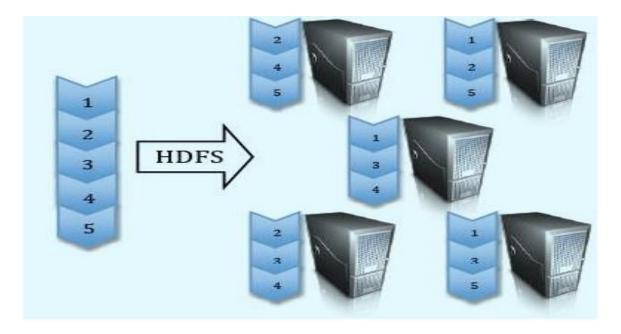
```
<The, 1> <teacher, 1> <went, 1> <to, 1> <the, 1> <store, 1> <the, 1> <store, 1> <was, 1> <closed, 1> <the, 1> <store, 1> <opens, 1> <in, 1> <the, 1> <morning, 1> <the 1> <store, 1> <opens, 1> <in, 1> <the, 1> <9am, 1> <
```

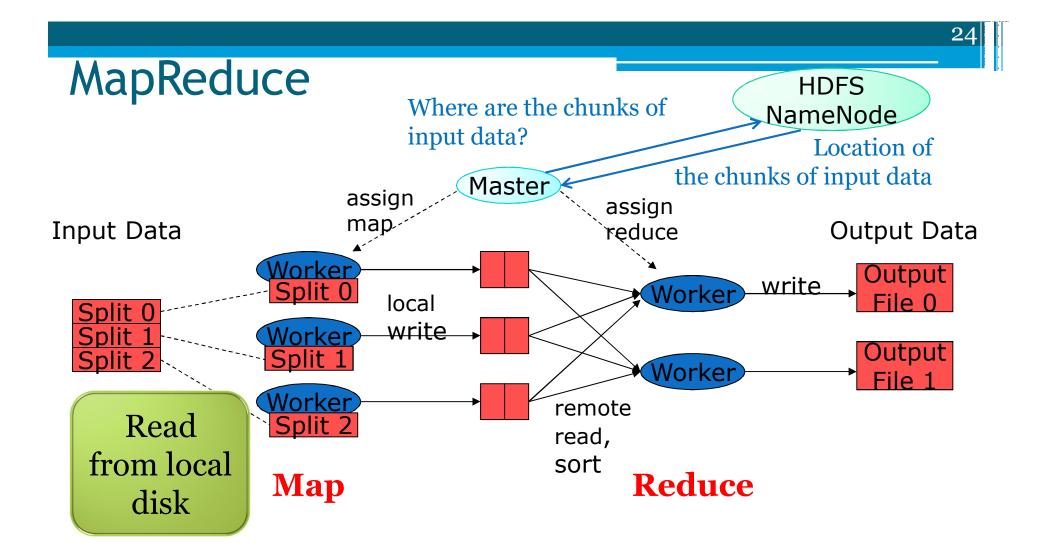

Reducer

- Accepts the Mapper output, and aggregates values on the key
 - For our example, the reducer input would be:

<The, 1> <teacher, 1> <went, 1> <to, 1> <the, 1> <store, 1> <the, 1> <store, 1> <was, 1> <closed, 1> <the, 1> <store, 1> <opens,1> <in, 1> <the, 1> <morning, 1> <the 1> <store, 1> <opens, 1> <at, 1> <9am, 1>

• The output would be:


<The, 6> <teacher, 1> <went, 1> <to, 1> **(store, 3)** <was, 1> <closed, 1> <opens, 1> <morning, 1> <at, 1> <9am, 1>



Google File System (GFS) Hadoop Distributed File System (HDFS)

23

• Split data and store 3 replica on commodity servers

Locality Optimization

- Master scheduling policy:
 - Asks GFS for locations of replicas of input file blocks
 - Map tasks scheduled so GFS input block replica are on same machine or same rack

25

- Effect: Thousands of machines read input at local disk speed
 - Eliminate network bottleneck!

Failure in MapReduce

• Failures are norm in commodity hardware

26

• Worker failure

- Detect failure via periodic heartbeats
- Re-execute in-progress map/reduce tasks

• Master failure

Single point of failure; Resume from Execution Log

Robust

• Google's experience: lost 1600 of 1800 machines once!, but finished fine

Fault tolerance: Handled via re-execution

- On worker failure:
 - Detect failure via periodic heartbeats
 - Re-execute completed and in-progress map tasks
 - Task completion committed through master
- Robust: [Google's experience] lost 1600 of 1800 machines, but finished fine

Refinement: Redundant Execution

• **Slow workers** significantly lengthen completion time

 $\mathbf{28}$

- Other jobs consuming resources on machine
- Bad disks with soft errors transfer data very slowly
- Weird things: processor caches disabled (!!)
- Solution: spawn backup copies of tasks
 - Whichever one finishes first "wins"

Refinement: Skipping Bad Records

Map/Reduce functions sometimes fail for particular inputs

- Best solution is to debug & fix, but not always possible
- If master sees two failures for the same record:
 - Next worker is told to skip the record

30

Summary

MapReduce

- Programming paradigm for data-intensive computing
- Distributed & parallel execution model
- Simple to program
 - The framework automates many tedious tasks (machine selection, failure handling, etc.)