
Hálózatba kapcsolt erőforrás

platformok és alkalmazásaik
Simon Csaba

TMIT

2018

What is Hadoop?

• Apache top level project, open-source
implementation of frameworks for reliable,
scalable, distributed computing and data
storage.

• It is a flexible and highly-available architecture
for large scale computation and data processing
on a network of commodity hardware.

What is Hadoop?
• Hadoop:

• an open-source software framework that supports data-
intensive distributed applications, licensed under the
Apache v2 license.

• Goals / Requirements:
• Abstract and facilitate the storage and processing of

large and/or rapidly growing data sets
• Structured and non-structured data
• Simple programming models

• High scalability and availability
• Use commodity (cheap!) hardware with little

redundancy
• Fault-tolerance
• Move computation rather than data

Hadoop’s Developers

Doug Cutting

2005: Doug Cutting and Michael J. Cafarella developed
Hadoop to support distribution for the Nutch search
engine project.

The project was funded by Yahoo.

2006: Yahoo gave the project to Apache
Software Foundation.

http://en.wikipedia.org/wiki/Nutch

Google Origins

2003

2004

2006

Hadoop’s Architecture: MapReduce Engine

Hadoop’s Architecture
MapReduce Engine:

• JobTracker & TaskTracker

• JobTracker splits up data into smaller tasks(“Map”) and

sends it to the TaskTracker process in each node

• TaskTracker reports back to the JobTracker node and
reports on job progress, sends data (“Reduce”) or requests
new jobs

Current MapReduce Limitations
Scalability
Maximum Cluster Size – 4000 Nodes
Maximum Concurrent Tasks – 40000
Coarse synchronization in Job Tracker

Single point of failure
Failure kills all queued and running jobs
Jobs need to be resubmitted by users

Restart is very tricky due to complex state

Hadoop proposal: YARN
Yet Another Resource Negotiator
YARN Application Resource

Negotiator(Recursive Acronym)
Remedies the scalability shortcomings of

“classic” MapReduce
Is more of a general purpose framework of

which classic mapreduce is one application.

YARN
 Split up the two major responsibilities of the JobTracker/TaskTracker into

separate entities
 JobTracker

 global Resource Manager - Cluster resource management
 per application Application Master – doing job scheduling and monitoring,

negotiating the resource containers from the Scheduler, tracking their status
and monitoring for progress

 Tasktracker
 new per-node slave Node Manager (NM) - responsible for launching the

applications’ containers, monitoring their resource usage (cpu, memory, disk,
network) and reporting to the Resource Manager

 (a per-application Container running on a NodeManager)

 YARN maintains compatibility with existing MapReduce applications and users

Comparing YARN with MapReduce

13

Criteria YARN MapReduce

Type of processing

Real-time, batch,
interactive
processing with
multiple engines

Silo & batch
processing with
single engine

Cluster resource
optimization

Excellent due to
central resource
management

Average due to fixed
Map & Reduce slots

Suitable for
MapReduce & Non
– MapReduce
applications

Only MapReduce
applications

Managing cluster
resource

Done by YARN Done by JobTracker

…supported by Hadoop’s own filesystem

• The Hadoop Distributed File System (HDFS) is a distributed file system
designed to run on commodity hardware. It has many similarities with
existing distributed file systems. However, the differences from other
distributed file systems are significant.

▫ highly fault-tolerant and is designed to be deployed on low-cost

hardware.
▫ provides high throughput access to application data and is suitable for

applications that have large data sets.
▫ relaxes a few POSIX requirements to enable streaming access to file

system data.
▫ part of the Apache Hadoop Core project. The project URL is

http://hadoop.apache.org/core/.

14

http://hadoop.apache.org/core/

MapReduce with HDFS

• Distributed, with some centralization
• Main nodes of cluster are where most of the computational

power and storage of the system lies
• Main nodes run TaskTracker to accept and reply to MapReduce

tasks, and also DataNode to store needed blocks closely as
possible

• Central control node runs NameNode to keep track of HDFS
directories & files, and JobTracker to dispatch compute tasks to
TaskTracker

• Written in Java, also supports Python and Ruby

HDFS properties

• Hadoop Distributed Filesystem
• Tailored to needs of MapReduce
• Targeted towards many reads of filestreams
• Writes are more costly
• High degree of data replication (3x by default)
• No need for RAID on normal nodes
• Large blocksize (64MB)
• Location awareness of DataNodes in network

HDFS Name Node

• Stores metadata for the files, like the directory structure of a
typical FS.

• The server holding the NameNode instance is quite crucial,
as there is only one.

• Transaction log for file deletes/adds, etc. Does not use
transactions for whole blocks or file-streams, only metadata.

• Handles creation of more replica blocks when necessary
after a DataNode failure

HDFS Data Node

• Stores the actual data in HDFS

• Can run on any underlying filesystem (ext3/4, NTFS, etc)

• Notifies NameNode of what blocks it has

• NameNode replicates blocks 2x in local rack, 1x elsewhere

Hadoop Framework Tools

Does Hadoop require HDFS?
• Errr, actually…

• None of these components are necessarily limited to using

HDFS

• Many other distributed file-systems with quite different
architectures work

• IF Hadoop knows which hosts are closest to the data THEN
reduces network traffic

• Many other software packages besides Hadoop's MapReduce
platform make use of HDFS

YARN advantage over MapReduce
Support for programming paradigms other than MapReduce

(Multi tenancy)

Tez – Generic framework to run a complex DAG

HBase on YARN (HOYA)

Compute engine (e.g., Machine Learning): Spark

Graph processing: Giraph

Real-time processing: Apache Storm

Enabled by allowing the use of paradigm-specific application
master

Run all on the same Hadoop cluster!

Tez on YARN
Hindi for speed

Provides a general-purpose, highly customizable framework that
creates simplifies data-processing tasks across both small scale (low-
latency) and large-scale (high throughput) workloads in Hadoop.

Generalizes the MapReduce paradigm to a more powerful
framework by providing the ability to execute a complex DAG

Enables Apache Hive, Apache Pig and Cascading can meet
requirements for human-interactive response times and extreme
throughput at petabyte scale

Tez on YARN
Original MapReduce requires disk I/O after each stage

A series of MapReduce jobs following each other would result in lots
of I/O

Tez eliminates these intermediate steps, increasing the speed and
lowering the resource usage

Tez on YARN
Performance gains over Mapreduce
Eliminates replicated write barrier between successive

computations
Eliminates job launch overhead of workflow jobs
Eliminates extra stage of map reads in every workflow

job
Eliminates queue and resource contention suffered by

workflow jobs that are started after a predecessor job
completes

HBase on YARN(HOYA)
Be able to create on-demand HBase clusters easily -by and or in

apps

With different versions of HBase potentially (for testing etc.)

Be able to configure different HBase instances differently

For example, different configs for read/write workload
instances

Better isolation

Run arbitrary co-processors in user’s private cluster

User will own the data that the hbase daemons create

HBase on YARN(HOYA)
MR jobs should find it simple to create (transient) HBase clusters

For Map-side joins where table data is all in HBase, for
example

Elasticity of clusters for analytic / batch workload processing

Stop / Suspend / Resume clusters as needed

Expand / shrink clusters as needed

Be able to utilize cluster resources better

Run MR jobs while maintaining HBase’s low latency SLAs

Hadoop Subprojects - Summary

• Pig
▫ High-level language for data analysis

• HBase
▫ Table storage for semi-structured data

• Zookeeper
▫ Coordinating distributed applications

• Hive
▫ SQL-like Query language and Metastore

• Mahout
▫ Machine learning

Apache Spark
• Standalone generic BigData

computational framework
▫ In-memory data processing

▫ Batch and streaming mode

• Can be combined with
Hadoop

• Without Hadoop, e.g.,
Kubernetes

28

Spark components

29

• Resilient Distributed Dataset (RDD)
• the primary data abstraction and the core of Spark
• resilient and distributed collection of records spread over many partitions
• Shuffling: redistributing data across partitions

• Stage
• physical unit of execution

Spark terminology

30

31

Spark / cluster mode deployment

spark_submit

Spark on K8S

32

Spark on K8s + HDFS

• No YARN, no data locality?

33

Spark on K8s + HDFS
• K8S master provides an API to match executor and datanode host IDs

(IP, label)

34

The effect of data locality

35

SparkPI example over Kubernetes

36

Pi számítása BigData klaszterben

Pi számítása BigData klaszterben

