Halozatba kapcsolt eroforras
platformok es alkalmazasaik

Simon Csaba
TMIT
2018

(- Ti=TdlarE
What is Hadoop?

Apache top level project, open-source
implementation of frameworks for reliable,
scalable, distributed computing and data
storage.

It is a flexible and highly-available architecture
for large scale computation and data processing
on a network of commodity hardware.

What is Hadoop?

« Hadoop:
* an open-source software framework that supports data-
intensive distributed applications, licensed under the
Apache v2 license.
* Goals / Requirements:
» Abstract and facilitate the storage and processing of
large and/or rapidly growing data sets
» Structured and non-structured data
« Simple programming models
» High scalability and availability
» Use commodity (cheap!) hardware with little
redundancy
« Fault-tolerance
* Move computation rather than data

Hadoop’s Developers

Doug Cutting

ﬁ?u— [dlara]m)

2005: Doug Cutting and Michael J. Cafarella developed
Hadoop to support distribution for the Nutch search
engine project. g

The project was funded by Yahoo.

2006: Yahoo gave the project to Apache
Software Foundation.

http://en.wikipedia.org/wiki/Nutch

Google Origins

The Google File System

Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung
Google~

2003

MapReduce: Simplified Data Processing on Large Clusters

Jeffrey Dean and Sanjay Ghemawat

2004

jeff@ google com, sanjay @ google.com

Google, Inc.

Rigtabhle: A& IMstribated Storage Systemm for Stroctored Diata

Fay Chassg, Je@rey Dean, Sanjay Ghemaacal, Wilkson (O, Hsich, Deborah A, Wallach
Mk Burrowes, Tushar Chandera, Aondeew: Fikes, FHoben E Gruber
§ Vot o I g o A o s it B oy T, Bl i S v e 1 | S0 prowenglic vt

'|:.;|-1-.h:'|'-| L o

2006

A bt

rtabdes moa diaribetead aacaa e oy o i
arced data tha? as demgmed Be el B e wery Drge
priabyies of dsts acroes thrausesmds of cosrmamod

s Mlaoy peopecis af Choog le sbore dlaia se Bagiahles

ety el madeantgg. Dol Farth afed Geegle Fa-

. Thew appbostbom plaes voy Alfcren? demoendh

higtsbde, both i wvms of dats sire §irom URLs o

LT oy

B L L TR P e T

o Focvid wcallaBaliry il hugh perforssancs, Bal Big
b s Al re ! e et T s i B.-
choape el sapeeoet @ Pl relarwrenal adars e | prveme;
e s o P TR T T e i TR el
vmarmer contred e dlets Lay cea? o] fowrmat, s
B clsrrete G rvsrsass Shasor ol brarslletsy PR M o
chiatn g presaree o 16 S wrelerDying Sorage i o
rrmn foaracs Lhal' © e B arba
ilaly o eonte rpreted sy

L T T T e,
wrnpe Bogisbde aburre

Hadoop s Architecture: MapReduce Engine

Submit Job > Job

|
e crebehs casiks Do Task Trackers
ek || Corcrdinate mag B roducn phase
wrape] Ta T T

Tracker

_ p—— i e [ﬁlltﬂ!llﬂ.
el 3 —

Fike Mol = —
il IMEE |
Task | [a—
Tracker || ||| ®esonr 5
I . I

e =

Tracke Bopssnt

Hadoop’s Architecture

MapReduce Engine:

e JobTracker & TaskTracker

« JobTracker splits up data into smaller tasks(“Map”) and
sends it to the TaskTracker process in each node

« TaskTracker reports back to the JobTracker node and
reports on job progress, sends data (“Reduce”) or requests
new jobs

Hadoop MapReduce Classic

+ JobTracker

— Manages cluster resources and job scheduling

+ TaskTracker

— Per-node agent
~ Managetasks @9 '

MapReduce Status ———»
Job Submission =====-= >

Current MapReduce Limitations

<*Scalability
‘* Maximum Cluster Size — 4000 Nodes
“*Maximum Concurrent Tasks — 40000
“*Coarse synchronization in Job Tracker
“+Single point of failure
s Failure kills all queued and running jobs
“*Jobs need to be resubmitted by users
»Restart is very tricky due to complex state

N
Hadoop proposal: YARN

“*Yet Another Resource Negotiator

“*YARN Application Resource
Negotiator(Recursive Acronym)

“*Remedies the scalability shortcomings of
“classic” MapReduce

“+Is more of a general purpose framework of
which classic mapreduce is one application.

YARN

<+ Split up the two major responsibilities of the JobTracker/TaskTracker into
separate entities

*» JobTracker
% global Resource Manager - Cluster resource management

% per application Application Master — doing job scheduling and monitoring,
neﬁotiatipg the resource containers from the Scheduler, tracking their status
and monitoring for progress

*» Tasktracker

< new per-node slave Node Manager (NM) - responsible for launching the
applications’ containers, monitoring their resource usage (cpu, memory, disk,
network) and reporting to the Resource Manager

% (a per-application Container running on a NodeManager)

“» YARN maintains compatibility with existing MapReduce applications and users

YARN — Architectural Overview

- Scalability - Clusters of
6,000-10,000 machines

— Each machine with 16
cores, 48G/96G RAM,
24TB/36TB disks

— 100,000+ concurrent tasks
— 10,000 concurrent jobs

MapReduce Stalus ——#
Job Submission =-=--- -
Nede Status . -
Resource Request --.--..... »

|
Comparing YARN with MapReduce

Criteria YARN MapReduce
Real-time, batch, Silo & batch
Type of processing interactive processing with
processing with . .
)) single engine
multiple engines
Cluster resource Excellent due to Average due to fixed
. central resource
optimization Map & Reduce slots
management
MapReduce & Non
Suitable for — MapReduce Only. Ma.pReduce
I applications
applications
Managing cluster Done by YARN Done by JobTracker

resource

...supported by Hadoop’s own filesystem

- The Hadoop Distributed File System (HDFS) is a distributed file system
designed to run on commodity hardware. It has many similarities with
existing distributed file systems. However, the differences from other
distributed file systems are significant.

o highly fault-tolerant and is designed to be deployed on low-cost
hardware.

> provides high through}l)ut access to application data and is suitable for
applications that have large data sets.

= relaxes a few POSIX requirements to enable streaming access to file
system data.

: Eart of the Apache Hadoop Core project. The project URL is
ttp://hadoop.apache.org/core/.

http://hadoop.apache.org/core/

MapReduce with HDFS

» Distributed, with some centralization

* Main nodes of cluster are where most of the computational
power and storage of the system lies

« Main nodes run TaskTracker to accept and reply to MapReduce
tasks, and also DataNode to store needed blocks closely as
possible

* Central control node runs NameNode to keep track of HDFS
directories & files, and JobTracker to dispatch compute tasks to
TaskTracker

« Written in Java, also supports Python and Ruby

N
HDES properties

« Hadoop Distributed Filesystem

 Tailored to needs of MapReduce

« Targeted towards many reads of filestreams

« Writes are more costly

« High degree of data replication (3x by default)
* No need for RAID on normal nodes

« Large blocksize (64MB)

« Location awareness of DataNodes in network

N
HDFS Name Node

« Stores metadata for the files, like the directory structure of a
typical FS.

» The server holding the NameNode instance is quite crucial,
as there is only one.

« Transaction log for file deletes/adds, etc. Does not use
transactions for whole blocks or file-streams, only metadata.

« Handles creation of more replica blocks when necessary
after a DataNode failure

N
HDFS Data Node

« Stores the actual data in HDFS
« Can run on any underlying filesystem (ext3/4, NTFS, etc)
* Notifies NameNode of what blocks it has

« NameNode replicates blocks 2x in local rack, 1x elsewhere

Bl Applications
(query, analytics, reporting, statistics)

1

E DWW

Orchestration Framework

conneciorts) | | R | - 1] | I

Data Access Framework

| ra gl | |

Network

Data Storage Frameworl Data Processing Framework
{({HDFS) (MapReduce)

JV M

Operating System {(Linux)

Dell PE-R, PE-C Servers

Backup & Recovery

Deployment

Security

Management

N
Does Hadoop require HDFS?

Errr, actually...

* None of these components are necessarily limited to using
HDFS

« Many other distributed file-systems with quite different
architectures work

« IF Hadoop knows which hosts are closest to the data THEN
reduces network traffic

« Many other software packages besides Hadoop's MapReduce
platform make use of HDFS

N
YARN advantage over MapReduce

“» Support for programming paradigms other than MapReduce
(Multi tenancy)

“*Tez — Generic framework to run a complex DAG
*+*HBase on YARN (HOYA)

“Compute engine (e.g., Machine Learning): Spark
“+Graph processing: Giraph

“*Real-time processing: Apache Storm

“+Enabled by allowing the use of paradigm-specific application
master

“*Run all on the same Hadoop cluster!

N
Tez on YARN

<+ Hindi for speed

» Provides a general-purpose, highly customizable framework that
creates simplifies data-processing tasks across both small scale (low-
latency) and large-scale (high throughput) workloads in Hadoop.

*» Generalizes the MapReduce paradigm to a more powerful
framework by providing the ability to execute a complex DAG

“» Enables Apache Hive, Apache Pig and Cascading can meet
requirements for human-interactive response times and extreme
throughput at petabyte scale

N
Tez on YARN

< Original MapReduce requires disk I/O after each stage
“* A series of MapReduce jobs following each other would result in lots

of I/0
» Tez eliminates these intermediate steps, increasing the speed and
lowering the resource usage .

Pig/Hive - MR Pig/Hive - Tez

N
Tez on YARN

“*Performance gains over Mapreduce
“*Eliminates replicated write barrier between successive
computations
“*Eliminates job launch overhead of workflow jobs
“*Eliminates extra stage of map reads in every workflow
job
“*Eliminates queue and resource contention suffered by

workflow jobs that are started after a predecessor job
completes

N
HBase on YARN(HOYA)

*» Be able to create on-demand HBase clusters easily -by and or in
apps
s+ With different versions of HBase potentially (for testing etc.)
“» Be able to configure different HBase instances differently

“For example, different configs for read /write workload
instances

“* Better isolation
“Run arbitrary co-processors in user’s private cluster
% User will own the data that the hbase daemons create

N
HBase on YARN(HOYA)

“* MR jobs should find it simple to create (transient) HBase clusters

“+For Map-side joins where table data is all in HBase, for
example

<+ Elasticity of clusters for analytic / batch workload processing
“»Stop / Suspend / Resume clusters as needed
“*Expand / shrink clusters as needed

<* Be able to utilize cluster resources better
“+Run MR jobs while maintaining HBase’s low latency SLASs

Hadoop Subprojects - Summary

- Pi
g %igh—level language for data analysis
- HBase
= Table storage for semi-structured data
- Zookeeper
= Coordinating distributed applications
- Hive
s SQL-like Query language and Metastore
- Mahout
= Machine learning

APACHE

Apache Spark Spark.

- Standalone generic BigData
computational framework | .

= In-memory data processing u

| Spark | , ‘ ‘
s Batch and streaming mode . Lgﬂgm
+ Can be combined with - sparkCore

Hadoop

Kubemmetes VSl e

Spark components

» Resilient Distributed Dataset (RDD)
« the primary data abstraction and the core of Spark
 resilient and distributed collection of records spread over many partitions
» Shuffling: redistributing data across partitions
- Stage
« physical unit of execution

l o .

Spark terminology

Driver Process that contains the SparkContext
Executor [rocess that executes one or more Spark tasks
Master Frocess that manages applications across the cluster

Worker Frocess that manages executors on a particular node

1
Spark / cluster mode deployment

————————————————————————————

| Clust
|
: Executor JVM i
i JVM heap | ||
Driver JVM :
o EEE |
spark_submit i ||JVM heap . :
. |
Client JVM ' || Scheduler !
= S
' || Spark
|| Context Executor JVM

w kugtes
Spark on K85

Spark Core Kubernetes Scheduler Backend

\ \

/.“\

new executors

remove executors

\
\

* Resource Requests
+ Authnz

« Communication with K8s

configuration H

e

Kubernetes Cluster

-—)_/‘-/

Runs Spark Drivers/Executors
Runs Shuffle Service
Runs Additional Components

for Spark jobs

Spark on K8s + HDFS
- No YARN, no data locality?

Kubernetes example e Read ffileA
N
Driver Pod Read !ﬂILB Executor Pod 1 \ Executor Pod 2
b > & w || ¥ b

10.0.0.2 ioion ¢ | |-.| 10.0.1.2
docker ‘ ._ ; docke, f .
node A _ ' node B

196.0.0.5 196.0.0.6

N
Spark on K8s + HDFS

- K8S master provides an API to match executor and datanode host IDs

(IP, label)
4/\ReadiﬁleB
Y
Driver :meecutor Pod 1 \ Executor Pod 2
& R %
A .
10.0.0.2 . 10.0.0.3 - 10.0.1.2
: ffileA ' ffileB
A _ ' node B _
166:00.5 = 196.0.0.6 -

The effect of data locality

without data locality fix with data locality fix
- duration: 25 minutes - duration: 10 minutes

SparkP| example over Ku% |

Kubernetes cluster

Kubernetes master

= hed e Fiwe n
schedils I I
reguest execulor e
- | : S
' b ! . SPEre
eREcutar oon strh events R
“ A agdriver pod
™ g y o . !
.-
¥
¥ |

. i [¥
L) 1
opark executors pocds

Apache Spark running natively in a Kubernetes cluster

Pi szamitasa BigData klaszterben

3,1439 \
3,1434
3,1429

Pi szamitasa BigData klaszterben

