Halozatba kapcsolt eroforras
platformok és alkalmazasaik

Maliosz Markosz
TMIT
2018

Containers
- Operating System-level

virtualization
- Self-contained execution
environments -
= with their own, isolated =~ E=E3
CPU, memory, block I/0,

and network resources

= share the kernel of the B |
:
host operating system e —

Infrastructure Infrastructure

OB OB

Hypervisor-based Virtualization

Container virtualization

R RRRRRERRRRRRBBEEREEEEEREREERREREWY

Containers

» Pros
= lightweight, fast deployment time, portable, flexible
= quick scaling

- Cons

s security
- runs a daemon that requires root
» default user in container is root
= Jack the hardware isolation that VMs provide

e il

Use of Containers 1/2

- Application packaging
= with all of the parts it needs, such as libraries and
other dependencies, and ship it all out as one
package
- DevOps, Continuous Integration / Continuous
Delivery

e i

Use of Containers 2/2

» Microservices architecture

= complex apﬁhcatlons broken down into smaller, composable
pleces which work together

divide and conquer
- same concept: Service Oriented Architecture (SOA)
= components can be scaled independently
= = orchestration tools
= contra: creates a whole another set of problems
-+ understanding system as a whole, what's dependent on what

- when one service fails, there is much higher possibility that it will
cause a cascading failure which is far harder to trace

Linux Containers: Implementation

- Linux kernel features
= cgroups (control groups): limiting and accounting
resource usage (CPU, memory, disk I/O, network)
for a collection of processes

= namespaces: allow per-namespace mappings of
resources (e.g. process IDs, mounts, user IDs,
network interfaces, interprocess communication,
filesystems), i.e. process isolation

R RRRRRRRRRRREEEEEEEEEEEEEREERRRRRAY

A brief history

2000, FreeBSD jails
- 2001, Linux VServer
= Linux kernel patch
- 2005, OpenVZ (Open Virtuozzo)
= patched Linux kernel for virtualization, isolation, resource management and checkpointing
« 2006, Process Containers (Google) = cgroups
- 2008, Original Linux Containers: LXC, LXD
= adding tools, templates, libraries for easy management
- 2013, Docker (<= 2008, dotCloud, Inc.)
= utility that can efficiently create, ship, and run containers (high level view)
= started with own container runtime environment

= since Docker Engine 1.11 (2016) it is built on runC (a runtime based on Open Container
Intiative technology) and containerd

« 2013, CoreOS rkt (rocket)
= A Docker alternative

Windows Containers

- Using native container technology in Windows
- Docker on/for Windows Server 2016 or Windows 10 Pro
« Types
= Windows Server Containers
 Process and namespace isolation
+ Kernel is shared with host
s Hyper-V Containers

- Runs a container in a VM
« Kernel is not shared

R RRRRRRRRRRRRRRRREERRERRREERRRRRASAA

Docker terminology

- Container: runtime instance of a Docker image
- Image: filesystem and parameters
- Registry: repository of images

= Docker Hub

= pull/push

RRRRRRRRRRRRRRRREBERRERRREEDRRRRREA

Docker Architecture

Client) DOCKER_HOST) @——*
docker build --{--- Docker daemon | xql
. ‘ '-._.‘. S = = - ‘?‘l
N
\
, ~ N

I

N

4

N
docker ol BN 1 \
container image j . [Images }—

Al . GinX
-~ \'\. /
.\‘ // /

docker run —

docker dasmon

Sy

I 4

manages —»J [ﬂﬂﬂﬂﬂm 7

T~ N 7
Client [HHH]]]H“ 4 s
docker CLI P
network data volumes Ty e

l REST API ’ mﬂﬂﬂmﬂ ;

manages SBrver

1

Docker Images

- Read-only templates
- Consists of a series of layers
- Docker uses union file systems to combine
these layers into a single image
- Image is defined in a Dockerfile
= Starts from a base image (e.g. ubuntu, fedora, etc.)
= Adding new layers by simple instructions
- Image specifies
= container’s contents,
= which process to run when the container is launched,
= other configuration details

A Dockerfile:

FROM ubuntu:14.04
RUN apt-get update && apt-get install -y redis-server
EXPOSE 6379

ENTRYPOINT ["/usr/bin/redis-server"]

e i

Using Docker

 sudo docker run -i -t ubuntu /bin/bash
= automatically downloads an Ubuntu image
= creates a Docker container that just runs the bash shell
= You’ll get dropped into a command prompt, like:

root@4a2f737d6e2e: /#

s running in a clean environment
= very fast container start

- containers are ephemeral—changes to the container
aren’t persistent

- for persistent storage: volumes

Container Orchestration

R

Container Orchestration - Single node

- Docker compose
s running multi-container Sricess

o o web:
Docker applications ol -
o o o - "5000:5000"
= Compose file configures services — voumes:
—liégvolume01:/var/log
eais
redis:
image: redis
voiggiziume01: {1}

el

Container Orchestration - Multi node

- Automating Linux container operations
= Goals
* Cluster together multiple hosts
 Placement and Placement control
- Affinity/anti-affinity
 Network orchestration
 High availability
+ Scaling
 Load balancing
 Rolling upgrades
= Challenge: how to deploy and orchestrate containers at scale

R RRRRRRRRRREEESSEEEEEEEEREEERRRE=m

Container Orchestration Tools

- Tools
s On premise
+ Kubernetes (Google, 2014)
+ Docker Swarm
+ Apache Mesos / Marathon

= Cloud Provider
- Amazon ECS (Elastic Container Service)
- Azure Container Service
* Google Container Engine (built on Kubernetes)

Kubernetes

R RRRRERRRERREREEEEEEEERREREERRRRRRZ

Kubernetes

- Features
= build application services that span multiple containers
= schedule those containers across a cluster,
= scale those containers,
= manage the health of those containers over time
= manage changes to existing containerized applications
= fault-tolerant by allowing application components to restart and move across
systems as needed
+ Needs to integrate with networking, storage, security, telemetry and other
services to provide container infrastructure
- This is all very useful when it comes to simple, stateless services that you
can load balance across, and where all instances are completely identical

= Things get a bit more complicated when you have stateful services, or when the
micro-service itself is composed of multiple pieces

Kubernetes Architecture

- Pods add a layer of <> o)
abstraction to K o] []
grouped containers —\ R

- Supported "‘ = |
container formats {w} [— }
= Docker o) —

o TunC _) S S I =

.) Rt
o hypervisor-based .“ =

RRRRRRRRRRRRRRRREERRERRREERRRRRA=AY

Kubernetes Services

- A Kubernetes Service represents load-balancing group of PODs

& HTTP MYSQL WORDPRESS
Port : 8000 Port: 3306 Port : 8001
Replicas = 2 Replicas =1 Replicas =2

Replication-controller

RRRRRRRRRRRRRRRRRRRRRRRRRRRRRRAWn

Kubernetes Networking

- Docker model: via virtual bridge

- Kubernetes model: applies IP addresses at the Pod
scope
= containers within a Pod share their network

namespaces - including their IP address (reach each
others ports on localhost)

s inter-pod communication

= many implemetation alternatives
- Flannel, Contiv, Contrail, Linuxbridge, OpenVSwitch, ...

Inter-pod communication
- flanel - OVS

Core0OS Machine

Web App Fron
MAC
10.1.15.2/24 'ﬁ

Quter source: 192.168.0.100

< © 8

2 =

- S ; ubP

Ge—piy oo flanneld o—e § -\ Inner source: 10.115.2

é E s P | dest101203
Web App Frontend2 s | packet

.
-+ oo - E

S

Core0S Machine

Backend Servicel
Rl +—* 101202724 * OpenVSwitch GRE/VxLAN tunnel mesh

backupl container

e Linux bridge 'kbr0' replaces the default ‘docker0'

2 8 8
= s P bridge
T8 7 Menned. per3 g o Pod traffic flows through the tunnels via OVS
= E b3 e Examples of Network X could be LAN, internet,
Backend Sep EC2 vpc, SDN
" e The tunnel mesh could be static, flow based or a
ackend2 container 10.1.20.3/24 combination

Docker Swarm

RS

Docker Swarm Mode

- Docker Engine in swarm mode (since v1.12.0)
= Cluster management
= Scaling
= Desired state reconciliation
o Multi-host networking
= Service discovery
= Load balancing
= Rolling updates
- Service: Central structure of the swarm system

= Creating a service: specifying which container image to use and which
commands to execute inside running containers

Docker Swarm Architecture

- Manager nodes
= Maintain cluster state
s Schedule services
= Serving swarm mode API
= Multiple managers for fault

|

|

‘ |

tOlerance Manager Manager Manager :
|

« Worker nodes
o Execute containers
= By default managers are also

5) A
,‘:‘ “"‘rl | “‘ ““'w
Tasks | \ Q / \ *

* | 4 \ 0 Q ;;3‘, ﬂ * * N\
workers
Worker Worker Worker Worker Worker

(follower) (leader) (follower)

\
\
N

R RRRERRREREEEEEEEEEERREERRRRRRR

Swarm Mode Networking

- Swarm mode routing mesh

= access port on any node, the swarm load balancer
routes request to an active container

192.168.99.100:8080 192.168.99.101:8080 192.168.99.102:8080
my-web published port my-web published port my-web published port
warm swarm warm
load load load
bal balancei ball
., e reneraazaiattt
~' ' -
S sttt) R
10.0.0.1:80 10.0.0.2:80
my-web. 1 node1 my-web.2 node2 node3
192.16899.100 192.168.99.101 192.168.99.102

ingress network

R RRRRRRRRRRRRRREREREREERREERRRR Y

Containers and Cloud

Hosts can come from several different sources, including physical
servers, virtual machines or cloud providers

VMs and containers co-exist
Docker

» primarily a Linux-based container packaging technology

= Microsoft has adopted and partnered with Docker as its containerization
packaging standard for Azure

= Amazon ECS uses Docker images in task definitions to launch containers
on EC2 instances

Google, 2014

= everything at Google runs in a container

= we start over 2 billion containers per week

