
Hálózatba kapcsolt erőforrás

platformok és alkalmazásaik
Simon Csaba

TMIT

2017

Hadoop: A Software Framework for Data

Intensive Computing Applications

• Software platform that lets one easily write and run applications that process
vast amounts of data. It includes:
 – MapReduce – offline computing engine
 – HDFS – Hadoop distributed file system

 – HBase (pre-alpha) – online data access

• Yahoo! is the biggest contributor
• Here's what makes it especially useful:

▫ Scalable: It can reliably store and process petabytes.
▫ Economical: It distributes the data and processing across clusters of

commonly available computers (in thousands).
▫ Efficient: By distributing the data, it can process it in parallel on the nodes

where the data is located.

▫ Reliable: It automatically maintains multiple copies of data and
automatically redeploys computing tasks based on failures.

What is Hadoop?

3

What does it do?

• Hadoop implements Google’s MapReduce, using HDFS

• MapReduce divides applications into many small blocks of work.

• HDFS creates multiple replicas of data blocks for reliability, placing
them on compute nodes around the cluster.

• MapReduce can then process the data where it is located.

• Hadoop ‘s target is to run on clusters of the order of 10,000-nodes.

4

Hadoop: Assumptions
It is written with large clusters of computers in mind and is built around the

following assumptions:
▫ Hardware will fail.
▫ Processing will be run in batches. Thus there is an emphasis on high

throughput as opposed to low latency.
▫ Applications that run on HDFS have large data sets. A typical file in HDFS is

gigabytes to terabytes in size.
▫ It should provide high aggregate data bandwidth and scale to hundreds of

nodes in a single cluster. It should support tens of millions of files in a single
instance.

▫ Applications need a write-once-read-many access model.
▫ Moving Computation is Cheaper than Moving Data.
▫ Portability is important.

5

Apache Hadoop Wins Terabyte Sort Benchmark (July 2008)

• One of Yahoo's Hadoop clusters sorted 1 terabyte of data in 209
seconds, which beat the previous record of 297 seconds in the
annual general purpose (daytona) terabyte sort benchmark. The sort
benchmark specifies the input data (10 billion 100 byte records),
which must be completely sorted and written to disk.

• The sort used 1800 maps and 1800 reduces and allocated enough
memory to buffers to hold the intermediate data in memory.

• The cluster had 910 nodes; 2 quad core Xeons @ 2.0ghz per node; 4
SATA disks per node; 8G RAM per a node; 1 gigabit ethernet on
each node; 40 nodes per a rack; 8 gigabit ethernet uplinks from each
rack to the core; Red Hat Enterprise Linux Server Release 5.1
(kernel 2.6.18); Sun Java JDK 1.6.0_05-b13

6

http://hadoop.apache.org/core
http://www.hpl.hp.com/hosted/sortbenchmark/

Example Applications and Organizations using Hadoop

 • A9.com – Amazon: To build Amazon's product search indices; process millions of sessions daily for
analytics, using both the Java and streaming APIs; clusters vary from 1 to 100 nodes.

• Yahoo! : More than 100,000 CPUs in ~20,000 computers running Hadoop; biggest cluster: 2000
nodes (2*4cpu boxes with 4TB disk each); used to support research for Ad Systems and Web Search

• AOL : Used for a variety of things ranging from statistics generation to running advanced algorithms
for doing behavioral analysis and targeting; cluster size is 50 machines, Intel Xeon, dual processors,
dual core, each with 16GB Ram and 800 GB hard-disk giving us a total of 37 TB HDFS capacity.

• Facebook: To store copies of internal log and dimension data sources and use it as a source for
reporting/analytics and machine learning; 320 machine cluster with 2,560 cores and about 1.3 PB
raw storage;

• FOX Interactive Media : 3 X 20 machine cluster (8 cores/machine, 2TB/machine storage) ; 10
machine cluster (8 cores/machine, 1TB/machine storage); Used for log analysis, data mining and
machine learning

• University of Nebraska Lincoln: one medium-sized Hadoop cluster (200TB) to store and serve
physics data;

7

http://a9.com/
http://www.yahoo.com/
http://aol.com/
http://www.facebook.com/
http://www.newscorp.com/management/fim.html
http://www.zvents.com/

More Hadoop Applications
• Adknowledge - to build the recommender system for behavioral targeting, plus other

clickstream analytics; clusters vary from 50 to 200 nodes, mostly on EC2.

• Contextweb - to store ad serving log and use it as a source for Ad optimizations/
Analytics/reporting/machine learning; 23 machine cluster with 184 cores and about
35TB raw storage. Each (commodity) node has 8 cores, 8GB RAM and 1.7 TB of
storage.

• Cornell University Web Lab: Generating web graphs on 100 nodes (dual 2.4GHz Xeon
Processor, 2 GB RAM, 72GB Hard Drive)

• NetSeer - Up to 1000 instances on Amazon EC2 ; Data storage in Amazon S3; Used for
crawling, processing, serving and log analysis

• The New York Times : Large scale image conversions ; EC2 to run hadoop on a large
virtual cluster

• Powerset / Microsoft - Natural Language Search; up to 400 instances on Amazon EC2 ;
data storage in Amazon S3

8

http://adknowledge.com/
http://www.contextweb.com/
http://www.weblab.infosci.cornell.edu/
http://www.netseer.com/
http://www.amazon.com/b/ref=sc_fe_l_2/002-1156069-5604805?ie=UTF8&node=201590011&no=3435361&me=A36L942TSJ2AJA
http://www.amazon.com/S3-AWS-home-page-Money/b/ref=sc_fe_l_2/002-1156069-5604805?ie=UTF8&node=16427261&no=3435361&me=A36L942TSJ2AJA
http://nytimes.com/
http://open.blogs.nytimes.com/2007/11/01/self-service-prorated-super-computing-fun/
http://www.powerset.com/
http://www.powerset.com/
http://www.powerset.com/
http://www.amazon.com/b/ref=sc_fe_l_2/002-1156069-5604805?ie=UTF8&node=201590011&no=3435361&me=A36L942TSJ2AJA
http://www.amazon.com/S3-AWS-home-page-Money/b/ref=sc_fe_l_2/002-1156069-5604805?ie=UTF8&node=16427261&no=3435361&me=A36L942TSJ2AJA

MapReduce Paradigm
• Programming model developed at Google

• Sort/merge based distributed computing

• Initially, it was intended for their internal search/indexing application, but
now used extensively by more organizations (e.g., Yahoo, Amazon.com,
IBM, etc.)

• It is functional style programming (e.g., LISP) that is naturally
parallelizable across a large cluster of workstations or PCS.

• The underlying system takes care of the partitioning of the input
data, scheduling the program’s execution across several
machines, handling machine failures, and managing required
inter-machine communication. (This is the key for Hadoop’s
success)

9

HDFS
• The Hadoop Distributed File System (HDFS) is a distributed file system

designed to run on commodity hardware. It has many similarities with
existing distributed file systems. However, the differences from other
distributed file systems are significant.
▫ highly fault-tolerant and is designed to be deployed on low-cost

hardware.
▫ provides high throughput access to application data and is suitable

for applications that have large data sets.
▫ relaxes a few POSIX requirements to enable streaming access to file

system data.
▫ part of the Apache Hadoop Core project. The project URL is

http://hadoop.apache.org/core/.

10

http://hadoop.apache.org/core/

HDFS Architecture

11

Example runs [1]
• Cluster configuration: ≈1800 machines; each with two 2GHz Intel Xeon processors with

4GB of memory (1-1.5 GB reserved for other tasks), two 160GB IDE disks, and a
gigabit Ethernet link. All of the machines were in the same hosting facility and therefore
the round-trip time between any pair of machines was less than a millisecond.

• Grep: Scans through 1010 100-byte records (distributed over 1000 input file by GFS),
searching for a relatively rare three-character pattern (the pattern occurs in 92,337
records). The input is split into approximately 64MB pieces (M = 15000), and the entire
output is placed in one file (R = 1). The entire computation took approximately 150
seconds from start to finish including 60 seconds to start the job.

• Sort: Sorts 10 10 100-byte records (approximately 1 terabyte of data). As before, the
input data is split into 64MB pieces (M = 15000) and R = 4000. Including startup
overhead, the entire computation took 891 seconds.

12

Execution overview
1. The MapReduce library in the user program first splits input files into M pieces

of typically 16 MB to 64 MB/piece. It then starts up many copies of the
program on a cluster of machines.

2. One of the copies of the program is the master. The rest are workers that are
assigned work by the master. There are M map tasks and R reduce tasks to
assign. The master picks idle workers and assigns each one a map task or a
reduce task.

3. A worker who is assigned a map task reads the contents of the assigned input
split. It parses key/value pairs out of the input data and passes each pair to the
user-defined Map function. The intermediate key/value pairs produced by the
Map function are buffered in memory.

4. The locations of these buffered pairs on the local disk are passed back to the
master, who forwards these locations to the reduce workers.

13

Execution overview (cont.)
5. When a reduce worker is notified by the master about these locations, it uses

RPC remote procedure calls to read the buffered data from the local disks of
the map workers. When a reduce worker has read all intermediate data, it sorts
it by the intermediate keys so that all occurrences of the same key are grouped
together.

6. The reduce worker iterates over the sorted intermediate data and for each
unique intermediate key encountered, it passes the key and the corresponding
set of intermediate values to the user's Reduce function. The output of the
Reduce function is appended to a final output file for this reduce partition.

7. When all map tasks and reduce tasks have been completed, the master wakes
up the user program---the MapReduce call in the user program returns back to
the user code. The output of the mapreduce execution is available in the R
output files (one per reduce task).

14

YARN
Yet Another Resource Negotiator
YARN Application Resource

Negotiator(Recursive Acronym)
Remedies the scalability shortcomings of

“classic” MapReduce
Is more of a general purpose framework of

which classic mapreduce is one application.

Current MapReduce Limitations
Scalability
Maximum Cluster Size – 4000 Nodes
Maximum Concurrent Tasks – 40000
Coarse synchronization in Job Tracker

Single point of failure
Failure kills all queued and running jobs
Jobs need to be resubmitted by users

Restart is very tricky due to complex state

Yet Another Resource Manager

• Split up the two major responsibilities of the
JobTracker/TaskTracker into separate entities

• - a global ResourceManager

• - a per-application ApplicationMaster

• - a per-node slave NodeManager

• - a per-application Container running on a
NodeManager

YARN
 Splits up the two major functions of JobTracker

Global Resource Manager - Cluster resource management

Application Master - Job scheduling and monitoring (one per
application). The Application Master negotiates resource containers from
the Scheduler, tracking their status and monitoring for progress.
Application Master itself runs as a normal container.

 Tasktracker

NodeManager (NM) - A new per-node slave is responsible for launching
the applications’ containers, monitoring their resource usage (cpu,
memory, disk, network) and reporting to the Resource Manager.

 YARN maintains compatibility with existing MapReduce applications and
users.

Classic MapReduce vs. YARN
Fault Tolerance and Availability

Resource Manager
 No single point of failure – state saved in ZooKeeper
 Application Masters are restarted automatically on RM restart

Application Master
Optional failover via application-specific checkpoint
MapReduce applications pick up where they left off via state saved in

HDFS

Wire Compatibility
 Protocols are wire-compatible
Old clients can talk to new servers
Rolling upgrades

Classic MapReduce vs. YARN
Support for programming paradigms other than MapReduce

(Multi tenancy)

Tez – Generic framework to run a complex DAG

HBase on YARN(HOYA)

Machine Learning: Spark

Graph processing: Giraph

Real-time processing: Storm

Enabled by allowing the use of paradigm-specific application
master

Run all on the same Hadoop cluster!

Storm on YARN

Motivations

Collocating real-time processing with batch
processing

Provides a huge potential for elasticity.

Reduces network transfer rates by moving storm
closer to Mapreduce.

Storm on YARN @Yahoo

Storm on YARN @Yahoo
Yahoo enhanced Storm to support Hadoop style security

mechanisms
Storm is being integrated into Hadoop YARN for resource

management.
Storm-on-YARN enables Storm applications to utilize the

computational resources in our tens of thousands of Hadoop
computation nodes.

YARN is used to launch the Storm
application master (Nimbus) on demand, and enables Nimbus to
request resources for Storm application slaves (Supervisors).

Tez on YARN
Hindi for speed

Provides a general-purpose, highly customizable framework that
creates simplifies data-processing tasks across both small scale (low-
latency) and large-scale (high throughput) workloads in Hadoop.

Generalizes the MapReduce paradigm to a more powerful
framework by providing the ability to execute a complex DAG

Enables Apache Hive, Apache Pig and Cascading can meet
requirements for human-interactive response times and extreme
throughput at petabyte scale

Tez on YARN
Original MapReduce requires disk I/O after each stage

A series of MapReduce jobs following each other would result in lots
of I/O

Tez eliminates these intermediate steps, increasing the speed and
lowering the resource usage

Tez on YARN
Performance gains over Mapreduce
Eliminates replicated write barrier between successive

computations
Eliminates job launch overhead of workflow jobs
Eliminates extra stage of map reads in every workflow

job
Eliminates queue and resource contention suffered by

workflow jobs that are started after a predecessor job
completes

HBase on YARN(HOYA)
Currently in prototype

Be able to create on-demand HBase clusters easily -by and or in
apps

With different versions of HBase potentially (for testing etc.)
Be able to configure different HBase instances differently
For example, different configs for read/write workload

instances
Better isolation

Run arbitrary co-processors in user’s private cluster
User will own the data that the hbase daemons create

HBase on YARN(HOYA)
MR jobs should find it simple to create (transient) HBase clusters

For Map-side joins where table data is all in HBase, for
example

Elasticity of clusters for analytic / batch workload processing

Stop / Suspend / Resume clusters as needed

Expand / shrink clusters as needed

Be able to utilize cluster resources better

Run MR jobs while maintaining HBase’s low latency SLAs

What is Hadoop?

• Apache top level project, open-source
implementation of frameworks for reliable,
scalable, distributed computing and data
storage.

• It is a flexible and highly-available architecture
for large scale computation and data processing
on a network of commodity hardware.

Search engines in 1990s

1996

1996

1997

1996

Google search engines

1998

2013

Hadoop’s Developers

Doug Cutting

2005: Doug Cutting and Michael J. Cafarella developed
Hadoop to support distribution for the Nutch search
engine project.

The project was funded by Yahoo.

2006: Yahoo gave the project to Apache
Software Foundation.

http://en.wikipedia.org/wiki/Nutch

Google Origins

2003

2004

2006

Some Hadoop Milestones
• 2008 - Hadoop Wins Terabyte Sort Benchmark (sorted 1

terabyte of data in 209 seconds, compared to previous record of 297
seconds)

• 2009 - Avro and Chukwa became new members of Hadoop
Framework family

• 2010 - Hadoop's Hbase, Hive and Pig subprojects completed, adding
more computational power to Hadoop framework

• 2011 - ZooKeeper Completed

• 2013 - Hadoop 1.1.2 and Hadoop 2.0.3 alpha.

 - Ambari, Cassandra, Mahout have been added

What is Hadoop?
• Hadoop:

• an open-source software framework that supports data-
intensive distributed applications, licensed under the
Apache v2 license.

• Goals / Requirements:
• Abstract and facilitate the storage and processing of

large and/or rapidly growing data sets
• Structured and non-structured data
• Simple programming models

• High scalability and availability
• Use commodity (cheap!) hardware with little

redundancy
• Fault-tolerance
• Move computation rather than data

Hadoop Framework Tools

Hadoop’s Architecture
• Distributed, with some centralization
• Main nodes of cluster are where most of the computational

power and storage of the system lies
• Main nodes run TaskTracker to accept and reply to MapReduce

tasks, and also DataNode to store needed blocks closely as
possible

• Central control node runs NameNode to keep track of HDFS
directories & files, and JobTracker to dispatch compute tasks to
TaskTracker

• Written in Java, also supports Python and Ruby

Hadoop’s Architecture

Hadoop’s Architecture
• Hadoop Distributed Filesystem
• Tailored to needs of MapReduce
• Targeted towards many reads of filestreams
• Writes are more costly
• High degree of data replication (3x by default)
• No need for RAID on normal nodes
• Large blocksize (64MB)
• Location awareness of DataNodes in network

Hadoop’s Architecture
NameNode:

• Stores metadata for the files, like the directory structure of a

typical FS.

• The server holding the NameNode instance is quite crucial,
as there is only one.

• Transaction log for file deletes/adds, etc. Does not use
transactions for whole blocks or file-streams, only metadata.

• Handles creation of more replica blocks when necessary
after a DataNode failure

Hadoop’s Architecture
DataNode:

• Stores the actual data in HDFS

• Can run on any underlying filesystem (ext3/4, NTFS, etc)

• Notifies NameNode of what blocks it has

• NameNode replicates blocks 2x in local rack, 1x elsewhere

Hadoop’s Architecture: MapReduce Engine

Hadoop’s Architecture
MapReduce Engine:

• JobTracker & TaskTracker

• JobTracker splits up data into smaller tasks(“Map”) and

sends it to the TaskTracker process in each node

• TaskTracker reports back to the JobTracker node and
reports on job progress, sends data (“Reduce”) or requests
new jobs

Hadoop’s Architecture
• None of these components are necessarily limited to using

HDFS

• Many other distributed file-systems with quite different
architectures work

• Many other software packages besides Hadoop's MapReduce
platform make use of HDFS

Hadoop in the Wild
• Hadoop is in use at most organizations that handle big data:

o Yahoo!
o Facebook
o Amazon
o Netflix
o Etc…

• Some examples of scale:

o Yahoo!’s Search Webmap runs on 10,000 core Linux
cluster and powers Yahoo! Web search

o FB’s Hadoop cluster hosts 100+ PB of data (July, 2012)
& growing at ½ PB/day (Nov, 2012)

Hadoop in the Wild

• Advertisement (Mining user behavior to generate
recommendations)

• Searches (group related documents)

• Security (search for uncommon patterns)

Three typical applications of Hadoop:

Hadoop in the Wild
• Non-realtime large dataset computing:

o NY Times was dynamically generating PDFs of articles

from 1851-1922

o Wanted to pre-generate & statically serve articles to
improve performance

o Using Hadoop + MapReduce running on EC2 / S3,

converted 4TB of TIFFs into 11 million PDF articles in
24 hrs

Hadoop in the Wild: Facebook Messages
• Design requirements:

o Integrate display of email, SMS and

chat messages between pairs and
groups of users

o Strong control over who users
receive messages from

o Suited for production use between
500 million people immediately
after launch

o Stringent latency & uptime
requirements

Hadoop in the Wild • System requirements

o High write throughput

o Cheap, elastic storage

o Low latency

o High consistency (within a

single data center good
enough)

o Disk-efficient sequential
and random read
performance

Hadoop in the Wild
• Classic alternatives

o These requirements typically met using large MySQL cluster &

caching tiers using Memcached

o Content on HDFS could be loaded into MySQL or Memcached
if needed by web tier

• Problems with previous solutions

o MySQL has low random write throughput… BIG problem for

messaging!

o Difficult to scale MySQL clusters rapidly while maintaining
performance

o MySQL clusters have high management overhead, require
more expensive hardware

Hadoop in the Wild

• Facebook’s solution
o Hadoop + HBase as foundations
o Improve & adapt HDFS and HBase to scale to FB’s workload

and operational considerations
 Major concern was availability: NameNode is SPOF &

failover times are at least 20 minutes
 Proprietary “AvatarNode”: eliminates SPOF, makes HDFS

safe to deploy even with 24/7 uptime requirement
 Performance improvements for realtime workload: RPC

timeout. Rather fail fast and try a different DataNode

Hadoop Subprojects - Summary

• Pig
▫ High-level language for data analysis

• HBase
▫ Table storage for semi-structured data

• Zookeeper
▫ Coordinating distributed applications

• Hive
▫ SQL-like Query language and Metastore

• Mahout
▫ Machine learning

