
Hálózatba kapcsolt erőforrás 

platformok és alkalmazásaik 
Maliosz Markosz 

TMIT 

2017 



Containers 
• Operating System-level 

virtualization 
• Self-contained execution 

environments 
▫ with their own, isolated 

CPU, memory, block I/O, 
and network resources 

▫ share the kernel of the 
host operating system 

2 



Containers 
• Pros 

▫ lightweight, fast deployment time, portable, flexible 
▫ quick scaling 

• Cons 
▫ security 
 runs a daemon that requires root 

 default user in container is root 

▫ lack the hardware isolation that VMs provide 
 
 

3 



Use of Containers 1/2 

• Application packaging 

▫ with all of the parts it needs, such as libraries and 
other dependencies, and ship it all out as one 
package 

• DevOps, Continuous Integration / Continuous 
Delivery 

4 



Use of Containers 2/2 
• Microservices architecture 

▫ complex applications broken down into smaller, composable 
pieces which work together 
 divide and conquer 
 same concept: Service Oriented Architecture (SOA) 

▫ components can be scaled independently 
▫  orchestration tools 
▫ contra: creates a whole another set of problems  
 understanding system as a whole, what's dependent on what 
 when one service fails, there is much higher possibility that it will 

cause a cascading failure which is far harder to trace 

 

5 



Linux Containers: Implementation 
• Linux kernel features 

▫ cgroups (control groups): limiting and accounting 
resource usage (CPU, memory, disk I/O, network) 
for a collection of processes 

▫ namespaces: allow per-namespace mappings of 
resources (e.g. process IDs, mounts, user IDs, 
network interfaces, interprocess communication, 
filesystems), i.e. process isolation 

 

6 



A brief history 
• 2000, FreeBSD jails 
• 2001, Linux VServer 

▫ Linux kernel patch 

• 2005, OpenVZ (Open Virtuozzo) 
▫ patched Linux kernel for virtualization, isolation, resource management and 

checkpointing 

• 2006, Process Containers (Google)  cgroups 
• 2008, Original Linux Containers: LXC 

▫ adding tools, templates, libraries for easy management 

• 2013, Docker ( 2008, dotCloud, Inc.) 
▫ own container runtime environment 
▫ utility that can efficiently create, ship, and run containers (high level view) 

• 2013, CoreOS rkt (rocket) 
▫ A Docker alternative 

 

7 



Windows Containers 
• Using native container technology in Windows 
• Docker on/for Windows Server 2016 or Windows 10 Pro 
• Types 

▫ Windows Server Containers 
 Process and namespace isolation 

 Kernel is shared with host 

▫ Hyper-V Containers 
 Runs a container in a VM 

 Kernel is not shared 

8 



9 



Docker terminology 

• Container: runtime instance of a Docker image 

• Image: filesystem and parameters 

• Registry: repository of images 

▫ Docker Hub 

▫ pull/push 

10 



Docker Architecture 

11 



Docker Images 
• Read-only templates 
• Consists of a series of layers 
• Docker uses union file systems to combine  

these layers into a single image 
• Image is defined in a Dockerfile 

▫ Starts from a base image (e.g. ubuntu, fedora, etc.) 
▫ Adding new layers by simple instructions 

• Image specifies 
▫ container’s contents,  
▫ which process to run when the container is launched, 
▫ other configuration details 

 

12 

A Dockerfile: 

FROM        ubuntu:14.04 

RUN         apt-get update && apt-get install -y redis-server 

EXPOSE      6379 

ENTRYPOINT  ["/usr/bin/redis-server"] 



Using Docker 
• sudo docker run -i -t ubuntu /bin/bash 

▫ automatically downloads an Ubuntu image 
▫ creates a Docker container that just runs the bash shell 
▫ You’ll get dropped into a command prompt, like: 
root@4a2f737d6e2e:/# 

▫ running in a clean environment 
▫ very fast container start 

• containers are ephemeral—changes to the container 
aren’t persistent 

• for persistent storage: volumes 

13 



14 



Container Orchestration – Single node 

• Docker compose 

▫ running multi-container  
Docker applications 

▫ Compse file configures services 

 

15 

A docker-compose.yml: 

version: '2' 

services: 

  web: 

    build: . 

    ports: 

    - "5000:5000" 

    volumes: 

    - .:/code 

    - logvolume01:/var/log 

    links: 

    - redis 

  redis: 

    image: redis 

volumes: 

  logvolume01: {} 



Container Orchestration – Multi node 
• Automating Linux container operations 

▫ Goals 
 Cluster together multiple hosts 
 Placement and Placement control 
 Network orchestration 
 Affinity/anti-affinity 
 High availability 
 Scaling 
 Load balancing 
 Rolling upgrades 

▫ Challenge: how to deploy and orchestrate containers at scale 
 

16 



Container Orchestration Tools 
• Tools 

▫ On premise 
 Kubernetes (Google, 2014) 
 Docker Swarm 
 Apache Mesos / Marathon 
 … 

▫ Cloud Provider 
 Amazon ECS (EC2 Container Service) 
 Azure Container Service 
 Google Container Engine (built on Kubernetes) 
 … 

 
 

17 



18 



Kubernetes 
• Features 

▫ build application services that span multiple containers 
▫ schedule those containers across a cluster,  
▫ scale those containers,  
▫ manage the health of those containers over time 
▫ manage changes to existing containerized applications 
▫ fault-tolerant by allowing application components to restart and move across 

systems as needed 

• Needs to integrate with networking, storage, security, telemetry and other 
services to provide container infrastructure 

• This is all very useful when it comes to simple, stateless services that you 
can load balance across, and where all instances are completely identical 
▫ Things get a bit more complicated when you have stateful services, or when the 

micro-service itself is composed of multiple pieces 

19 



Kubernetes Architecture 
• Pods add a layer of 

abstraction to 
grouped containers 

• Supported 
container formats 
▫ Docker 

▫ rkt 

▫ runC 

▫ hypervisor-based 

20 



Kubernetes Services 
• A Kubernetes Service represents load-balancing group of PODs 

21 



Kubernetes Networking 
• Docker model: via virtual bridge 
• Kubernetes model: applies IP addresses at the Pod 

scope 
▫ containers within a Pod share their network 

namespaces - including their IP address (reach each 
others ports on localhost) 

▫ inter-pod communication 
▫ Many implemetation alternatives 
 Flannel, Contiv, Contrail, Linuxbridge, OpenVSwitch, … 

 

22 



Inter-pod communication 
• flanel • OVS 

23 



24 



Docker Swarm Mode 
• Docker Engine in swarm mode (since v1.12.0) 

▫ Cluster management 
▫ Scaling 
▫ Desired state reconciliation 
▫ Multi-host networking 
▫ Service discovery 
▫ Load balancing 
▫ Rolling updates 

• Service: Central structure of the swarm system 
▫ Creating a service: specifying which container image to use and which 

commands to execute inside running containers 
 

25 



Docker Swarm Architecture 
• Manager nodes 

▫ Maintain cluster state 
▫ Schedule services 
▫ Serving swarm mode API 
▫ Multiple managers for fault 

tolerance 
• Worker nodes 

▫ Execute containers 
▫ By default managers are also 

workers 

26 



Swarm Mode Networking 

27 

• Swarm mode routing mesh 

▫ access port on any node, the swarm load balancer 
routes request to an active container 

 



Containers and Cloud 
• Hosts can come from several different sources, including physical 

servers, virtual machines or cloud providers 
• VMs and containers co-exist 
• Docker 

▫ primarily a Linux-based container packaging technology 
▫ Microsoft has adopted and partnered with Docker as its containerization 

packaging standard for Azure 
▫ Amazon ECS uses Docker images in task definitions to launch containers 

on EC2 instances 
• Google, 2014 

▫ everything at Google runs in a container 
▫ we start over 2 billion containers per week 

28 


