
Hálózatba kapcsolt erőforrás

platformok és alkalmazásaik
Simon Csaba

TMIT

2017

Parelell computing

Multiprocessing
• Flynn’s Taxonomy of Parallel Machines

▫ How many Instruction streams?
▫ How many Data streams?

• SISD: Single I Stream, Single D Stream
▫ A uniprocessor

• SIMD: Single I, Multiple D Streams
▫ Each “processor” works on its own data
▫ But all execute the same instrs in lockstep
▫ E.g. a vector processor or MMX

Flynn’s Taxonomy
• MISD: Multiple I, Single D Stream

▫ Not used much
▫ Stream processors are closest to MISD

• MIMD: Multiple I, Multiple D Streams
▫ Each processor executes its own instructions and

operates on its own data
▫ This is your typical off-the-shelf multiprocessor

(made using a bunch of “normal” processors)
▫ Includes multi-core processors

Multiprocessors
• Why do we need multiprocessors?

▫ Uniprocessor speed keeps improving
▫ But there are things that need even more speed

 Wait for a few years for Moore’s law to catch up?
 Or use multiple processors and do it now?

• Multiprocessor software problem
▫ Most code is sequential (for uniprocessors)

 MUCH easier to write and debug

▫ Correct parallel code very, very difficult to write
 Efficient and correct is even harder
 Debugging even more difficult (Heisenbugs)

MIMD Multiprocessors
Centralized Shared Memory Distributed Memory

Őry Máté, Építsünk szuperszámítógépet szabad szoftverb®l!

MIMD Multiprocessors
Centralized Shared Memory Distributed Memory

Centralized-Memory Machines
• Also “Symmetric Multiprocessors” (SMP)
• “Uniform Memory Access” (UMA)

▫ All memory locations have similar latencies
▫ Data sharing through memory reads/writes
▫ P1 can write data to a physical address A,

P2 can then read physical address A to get that data

• Problem: Memory Contention
▫ All processor share the one memory
▫ Memory bandwidth becomes bottleneck
▫ Used only for smaller machines

 Most often 2,4, or 8 processors

Distributed-Memory Machines
• Two kinds

▫ Distributed Shared-Memory (DSM)
 All processors can address all memory locations
 Data sharing like in SMP
 Also called NUMA (non-uniform memory access)
 Latencies of different memory locations can differ

(local access faster than remote access)
▫ Message-Passing

 A processor can directly address only local memory
 To communicate with other processors,

must explicitly send/receive messages
 Also called multicomputers or clusters

• Most accesses local, so less memory contention (can
scale to well over 1000 processors)

Message-Passing Machines

Message-Passing Machines
• A cluster of computers

▫ Each with its own processor and memory
▫ An interconnect to pass messages between them
▫ Producer-Consumer Scenario:

 P1 produces data D, uses a SEND to send it to P2
 The network routes the message to P2
 P2 then calls a RECEIVE to get the message

▫ Two types of send primitives
 Synchronous: P1 stops until P2 confirms receipt of message
 Asynchronous: P1 sends its message and continues

▫ Standard libraries for message passing:
Most common is MPI – Message Passing Interface

Hybrid architectures

Fat cluster GPU-accelerated GPU cluster

12

Communication Performance
• Metrics for Communication Performance

▫ Communication Bandwidth
▫ Communication Latency

 Sender overhead + transfer time + receiver overhead
▫ Communication latency hiding

• Characterizing Applications
▫ Communication to Computation Ratio

 Work done vs. bytes sent over network
 Example: 146 bytes per 1000 instructions

• Serial sections

▫ Very difficult to parallelize the entire app

▫ Amdahl’s law

• Large remote access latency (100s of ns)

▫ Overall IPC goes down

 Parallel Performance

Parallel

Parallel
Parallel

Overall

Speedup

F
)F-(1

1
 Speedup




1024 SpeedupParallel 

0.5 FParallel 

1.998 SpeedupOverall 

1024 SpeedupParallel 

0.99 FParallel 

91.2 SpeedupOverall 

8.2 CPI 

estCostRemoteRequ estRateRemoteRequCPI CPI Base 

4.0CPIBase  0.002estRateRemoteRequ Cycles 1200
ns/Cycle33.0

400ns
estCostRemoteRequ 

We need at least 7 processors just to break even!

This cost reduced with
multi-core

Message Passing Pros and Cons
• Pros

▫ Simpler and cheaper hardware
▫ Explicit communication makes programmers aware of costly

(communication) operations

• Cons
▫ Explicit communication is painful to program
▫ Requires manual optimization

 If you want a variable to be local and accessible via LD/ST, you must
declare it as such

 If other processes need to read or write this variable, you must explicitly
code the needed sends and receives to do this

#define ASIZE 1024

#define NUMPROC 4

double myArray[ASIZE/NUMPROC];

double mySum=0;

for(int i=0;i<ASIZE/NUMPROC;i++)

 mySum+=myArray[i];

if(myPID=0){

 for(int p=1;p<NUMPROC;p++){

 int pSum;

 recv(p,pSum);

 mySum+=pSum;

 }

 printf(“Sum: %lf\n”,mySum);

}else

 send(0,mySum);

 Message Passing: A Program
• Calculating the sum of array elements

Must manually split the array

“Master” processor adds up

partial sums and prints the result

“Slave” processors send their

partial results to master

MPI programming example

• https://hpcc.usc.edu/support/documentation/examples-of-mpi-programs

17

Shared Memory Pros and Cons
• Pros

▫ Communication happens automatically
▫ More natural way of programming

 Easier to write correct programs and gradually optimize them

▫ No need to manually distribute data
(but can help if you do)

• Cons
▫ Needs more hardware support
▫ Easy to write correct, but inefficient programs

(remote accesses look the same as local ones)

P P P P P P  

Microkernel

Multi-Processor Computing System

Threads Interface

Hardware

Operating System

Process Processor Thread
P

Applications

Computing Elements

Programming Paradigms

 Architectures

 System Software

 Applications

 P.S.Es

 Architectures

 System Software

 Applications

 P.S.Es

Sequential

Era

Parallel

Era

1940 50 60 70 80 90 2000 2030

Two Eras of Computing

 Commercialization

R & D Commodity

High-Performance Computing /

Introduction

Source: James R. Knight/Yale Center for Genome Analysis

1950’s – The Beginning...

2016 – Looking very similar...

...but there are differences
• Not a single computer but thousands of them, called a

cluster
▫ Hundreds of physical “computers”, called nodes
▫ Each with 4-64 CPU’s, called cores

• Nobody works in the server rooms anymore
▫ IT is there to fix what breaks, not to run computations (or help

you run computations)
▫ Everything is done by remote connections

• Computation is performed by submitting jobs for running
▫ This actually hasn’t changed...but how you run jobs has...

A Compute Cluster
You are here!

Compute-3-2
Login-0-1

Compute-3-1

Compute-2-2 Compute-2-1

Compute-1-2

Compute-1-1

Network

You Use a Compute Cluster! Surfing the Web

Compute
Blah.com

Compute

Compute Compute

Compute

Compute

Network

Construct the
webpage
contents

Return the
webpage

You are here!

Click on a link

Compute-3-2
Login-0-1

Compute-3-1

Compute-2-2 Compute-2-1

Compute-1-2

Compute-1-1

Network Connect
Run commands on

compute nodes (and
submit qsub jobs to

the rest of the cluster)

You are here!

Connect by
SSH

1970’s – Terminals, In the Beginning...

2016 – Pretty much the same...

• Terminal app on
Mac

• Look in the “Other”
folder in Launchpad

Cluster Models

Beowulf Clusters
• Simple and highly configurable
• Low cost
• Networked

▫ Computers connected to one another by a private Ethernet network
▫ Connection to an external network is through a single gateway

computer
• Configuration

▫ COTS – Commodity-off-the-shelf components such as inexpensive
computers

▫ Blade components – computers mounted on a motherboard that are
plugged into connectors on a rack

▫ Either shared-disk or shared-nothing model

Blade and Rack of Beowulf Cluster

Cluster computing concept

33

Cluster Computing - Research Projects
• Beowulf (CalTech and NASA) - USA
• CCS (Computing Centre Software) - Paderborn, Germany
• Condor - Wisconsin State University, USA
• DQS (Distributed Queuing System) - Florida State University, US.
• EASY - Argonne National Lab, USA
• HPVM -(High Performance Virtual Machine),UIUC&now UCSB,US
• far - University of Liverpool, UK
• Gardens - Queensland University of Technology, Australia
• MOSIX - Hebrew University of Jerusalem, Israel
• MPI (MPI Forum, MPICH is one of the popular implementations)
• NOW (Network of Workstations) - Berkeley, USA
• NIMROD - Monash University, Australia
• NetSolve - University of Tennessee, USA
• PBS (Portable Batch System) - NASA Ames and LLNL, USA
• PVM - Oak Ridge National Lab./UTK/Emory, USA

Cluster Computing - Commercial Software
• Codine (Computing in Distributed Network Environment) - GENIAS GmbH,

Germany
• LoadLeveler - IBM Corp., USA
• LSF (Load Sharing Facility) - Platform Computing, Canada
• NQE (Network Queuing Environment) - Craysoft Corp., USA
• OpenFrame - Centre for Development of Advanced Computing, India
• RWPC (Real World Computing Partnership), Japan
• Unixware (SCO-Santa Cruz Operations,), USA
• Solaris-MC (Sun Microsystems), USA
• ClusterTools (A number for free HPC clusters tools from Sun)
• A number of commercial vendors worldwide are offering clustering solutions

including IBM, Compaq, Microsoft, a number of startups like TurboLinux,
HPTI, Scali, BlackStone…..)

Motivation for using Clusters
• Surveys show utilisation of CPU cycles of desktop

workstations is typically <10%.
• Performance of workstations and PCs is rapidly

improving
• As performance grows, percent utilisation will

decrease even further!
• Organisations are reluctant to buy large

supercomputers, due to the large expense and short
useful life span.

Motivation for using Clusters
• The development tools for workstations are more

mature than the contrasting proprietary solutions for
parallel computers - mainly due to the non-standard
nature of many parallel systems.

• Workstation clusters are a cheap and readily
available alternative to specialised High Performance
Computing (HPC) platforms.

• Use of clusters of workstations as a distributed
compute resource is very cost effective - incremental
growth of system!!!

Cycle Stealing

• Usually a workstation will be owned by an
individual, group, department, or organisation -
they are dedicated to the exclusive use by the
owners.

• This brings problems when attempting to form a
cluster of workstations for running distributed
applications.

Cycle Stealing

• Typically, there are three types of owners, who
use their workstations mostly for:

1. Sending and receiving email and preparing
documents.

2. Software development - edit, compile, debug and
test cycle.

3. Running compute-intensive applications.

Cycle Stealing

• Cluster computing aims to steal spare cycles from (1) and
(2) to provide resources for (3).

• However, this requires overcoming the ownership hurdle
- people are very protective of their workstations.

• Usually requires organisational mandate that computers
are to be used in this way.

• Stealing cycles outside standard work hours (e.g.
overnight) is easy, stealing idle cycles during work hours
without impacting interactive use (both CPU and
memory) is much harder.

Rise & Fall of Computing Technologies

Mainframes Minis PCs

Minis PCs Network

 Computing
1970 1980 1995

Original Food Chain Picture

1984 Computer Food Chain

Mainframe

Vector Supercomputer

Mini Computer
Workstation

PC

Mainframe

Vector Supercomputer MPP

Workstation
PC

1994 Computer Food Chain

Mini Computer
(hitting wall soon)

(future is bleak)

Computer Food Chain (Now and Future)

What is a cluster?

• A cluster is a type of parallel or distributed processing
system, which consists of a collection of interconnected
stand-alone/complete computers cooperatively
working together as a single, integrated computing
resource.

• A typical cluster:
▫ Network: Faster, closer connection than a typical network

(LAN)
▫ Low latency communication protocols
▫ Looser connection than SMP

Why Clusters now?

(Beyond Technology and Cost)

• Building block is big enough
▫ complete computers (HW & SW) shipped in millions: killer

micro, killer RAM, killer disks,
killer OS, killer networks, killer apps.

• Workstations performance is doubling every 18 months.
• Networks are faster
• Higher link bandwidth (v 10Mbit Ethernet)

 Switch based networks coming (ATM)

 Interfaces simple & fast (Active Msgs)

• Striped files preferred (RAID)
• Demise of Mainframes, Supercomputers, & MPPs

Architectural Drivers…(cont)

• Node architecture dominates performance
▫ processor, cache, bus, and memory
▫ design and engineering $ => performance

• Greatest demand for performance is on large systems
▫ must track the leading edge of technology without lag

• MPP network technology => mainstream
▫ system area networks

• System on every node is a powerful enabler
▫ very high speed I/O, virtual memory, scheduling, …

...Architectural Drivers
• Clusters can be grown: Incremental scalability (up, down, and

across)
▫ Individual nodes performance can be improved by adding additional

resource (new memory blocks/disks)
▫ New nodes can be added or nodes can be removed
▫ Clusters of Clusters and Metacomputing

• Complete software tools
▫ Threads, PVM, MPI, DSM, C, C++, Java, Parallel C++, Compilers,

Debuggers, OS, etc.
• Wide class of applications

▫ Sequential and grand challenging parallel applications

Example Clusters: Berkeley
• 100 Sun

UltraSparcs

▫ 200 disks

• Myrinet SAN

▫ 160 MB/s

• Fast comm.

▫ AM, MPI, ...

• Ether/ATM
switched
external net

• Global OS

• Self Config

HA Cluster: Server Cluster with

"Heartbeat" Connection

Jobs

52

Distributed Supercomputing

• Combining multiple high-capacity resources on
a computational grid into a single, virtual
distributed supercomputer.

• Tackle problems that cannot be solved on a

single system.

High-Throughput Computing

• Uses the grid to schedule large numbers of loosely
coupled or independent tasks, with the goal of
putting unused processor cycles to work.

On-Demand Computing

 Uses grid capabilities to meet short-term

requirements for resources that are not

locally accessible.

 Models real-time computing demands.

Collaborative Computing
• Concerned primarily with enabling and

enhancing human-to-human interactions.
• Applications are often structured in terms of a

virtual shared space.

Data-Intensive Computing
 The focus is on synthesizing new information from data

that is maintained in geographically distributed

repositories, digital libraries, and databases.

 Particularly useful for distributed data mining.

Logistical Networking
• Logistical networks focus on exposing storage resources

inside networks by optimizing the global scheduling of
data transport, and data storage.

• Contrasts with traditional networking, which does not
explicitly model storage resources in the network.

• high-level services for Grid applications
• Called "logistical" because of the analogy it bears with

the systems of warehouses, depots, and distribution
channels.

P2P Computing vs Grid Computing

• Differ in Target Communities
• Grid system deals with more complex, more

powerful, more diverse and highly
interconnected set of resources than
P2P.

• VO

Cluster Work Schedulers

58

A typical Cluster Computing

Environment

PVM / MPI/ RSH

Application

Hardware/OS

???

CC should support

• Multi-user, time-sharing environments

• Nodes with different CPU speeds and memory sizes

(heterogeneous configuration)

• Many processes, with unpredictable requirements

• Unlike SMP: insufficient “bonds” between nodes

▫ Each computer operates independently

▫ Inefficient utilization of resources

The missing link is provide by cluster

middleware/underware

PVM / MPI/ RSH

Application

Hardware/OS

Middleware or

Underware

SSI Clusters--SMP services on a CC

• Adaptive resource usage for better performance

• Ease of use - almost like SMP

• Scalable configurations - by decentralized control

 Result: HPC/HAC at PC/Workstation prices

 “Pool Together” the “Cluster-Wide” resources

What is Cluster Middleware ?

• An interface between between use applications
and cluster hardware and OS platform.

• Middleware packages support each other at the
management, programming, and
implementation levels.

• Middleware Layers:
▫ SSI Layer
▫ Availability Layer: It enables the cluster services of

 Checkpointing, Automatic Failover, recovery from
failure,

 fault-tolerant operating among all cluster nodes.

Middleware Design Goals

• Complete Transparency (Manageability)
▫ Lets the see a single cluster system..

 Single entry point, ftp, telnet, software loading...

• Scalable Performance
▫ Easy growth of cluster

 no change of API & automatic load distribution.

• Enhanced Availability
▫ Automatic Recovery from failures

 Employ checkpointing & fault tolerant technologies
▫ Handle consistency of data when replicated..

Work schedulers - requirements
• Interactive or batch

• Stable
• Robust
• Efficient resource management
• Lightweigth
• Fair
• Avoids starvation

• SGE - Sun Grid Engine (Oracle Grid Engine, Open Grid Scheduler)
• SLURM (Simple Linux Utility for Resource Management)
• MOAB + Torque
• HTCondor
• …

65

Redirect: MOAB

66

Cluster Stack / Framework:

Cluster Workload Manager: Scheduler, Policy Manager, Integration
Platform

Message Passing

Seria
l

Paralle
l

Application

Resource
Manager

Grid Workload Manager: Scheduler, Policy Manager, Integration
Platform

Operating System

Hardware (Cluster or SMP)

Portal

CLI

GUI

Applicatio
n

Admin Users

S
e

c
u

r
it

y

Resource Manager (RM)

 • While other systems may have more strict interpretations
of a resource manager and its responsibilities, Moab's
multi-resource manager support allows a much more
liberal interpretation.
▫ In essence, any object which can provide environmental information

and environmental control can be utilized as a resource manager.
• Moab is able to aggregate information from multiple

unrelated sources into a larger more complete world view
of the cluster which includes all the information and
control found within a standard resource manager such as
TORQUE including:
▫ Node
▫ Job
▫ Queue management services.

The Evolved Cluster

Resource
Manager

MOAB

Compute
Nodes

Admin

User

License
Manager

Job
Queue

Myrin
et

Identity
Manager

Allocation
Manager

Resource
Manager

MOAB

Remote Site

Moab Architecture

What Moab Does

• Optimizes Resource Utilization with Intelligent Scheduling and
Advanced Reservations

• Unifies Cluster Management across Varied Resources and
Services

• Dynamically Adjusts Workload to Enforce Policies and Service
Level Agreements

• Automates Diagnosis and Failure Response

What Moab Does Not Do

• Does not does do resource management
(usually)

• Does not install the system (usually)
• Not a storage manager
• Not a license manager
• Does not do message passing

Supported Platforms/Environments
• Resource Managers

▫ TORQUE, OpenPBS, PBSPro, LSF, Loadleveler, SLURM, BProc,
clubMASK, S3, WIKI

• Operating Systems
▫ RedHat, SUSE, Fedora, Debian, FreeBSD, (+ all known variants

of Linux), AIX, IRIX, HP-UX, OS/X, OSF/Tru-64, SunOS,
Solaris, (+ all known variants of UNIX)

• Hardware
▫ Intel x86, Intel IA-32, Intel IA-64, AMD x86, AMD Opteron, SGI

Altix, HP, IBM SP, IBM x-Series, IBM p-Series, IBM i-Series, Mac
G4 and G5

Redirect: SLURM

https://www.open-mpi.org/video/slurm/Slurm_EMC_Dec2012.pdf

74

Role of SLURM resource manger

75

Role of SLURM resource manger

76

SLURM in a glance

77

• Simple Linux Utility for Resource Management
• Development started in 2002 at Lawrence Livermore National Laboratory as

a simple resource manager for Linux clusters
• Simple Linux Utility for Resource Management, used in many large

computers
• Small and simple (depends upon configuration, used by Intel for their

“cluster on a chip”)
• Highly scalable (managing 1.6 million core IBM BlueGene/Q, tested to 33

million cores using emulation)
• Fast (throughput up to 600 jobs per second and up to 1000 job submissions

per second)
• No kernel modifications

SLURM modularity

78

SLURM Entities

79

SLURM Entities Example

80

SLURM Entities Example

81

SLURM Entities Example

82

Linux cluster architecture

83

Enterprise architecture

84

Summary

• Clusters – networked commodity hardware

• Very high computation power

• Message Passing Interface

• Work scheduler

85

