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Motivation 

 Process lots of data 
• Google processed about 24 petabytes of data per day in 2009. 

 A single machine cannot serve all the data 
• You need a distributed system to store and process in parallel 

 Parallel programming? 
• Threading is hard! 

• How do you facilitate communication between nodes? 

• How do you scale to more machines? 

• How do you handle machine failures? 
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MapReduce 

 MapReduce [OSDI’04] provides  
• Automatic parallelization, distribution 
• I/O scheduling 
• Load balancing 

• Network and data transfer optimization 

• Fault tolerance 

• Handling of machine failures 

 Need more power: Scale out, not up! 
• Large number of commodity servers as opposed to some high end 

specialized servers 
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Apache Hadoop: 
Open source 

implementation of 
MapReduce 
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Typical problem solved by MapReduce 

 Read a lot of data 

 Map: extract something you care about from each record 

 Shuffle and Sort 

 Reduce: aggregate, summarize, filter, or transform 

 Write the results 
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MapReduce workflow 
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Mappers and Reducers 

 Need to handle more data? Just add more Mappers/Reducers! 

 No need to handle multithreaded code  

• Mappers and Reducers are typically single threaded and 
deterministic 

• Determinism allows for restarting of failed jobs 

• Mappers/Reducers run entirely independent of each other 
• In Hadoop, they run in separate JVMs 
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http://kickstarthadoop.blogspot.ca/2011/04/word-count-hadoop-map-reduce-example.html 

Example: Word Count 

(2012)  

Average Searches Per Day: 
5,134,000,000 

1000 nodes: each node will process 
5,134,000 queries 
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MapReduce 
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 Split data and store 3 replica on commodity servers 
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Google File System (GFS) 
Hadoop Distributed File System (HDFS) 
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MapReduce 
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Failure in MapReduce 

 Failures are norm  in commodity hardware 

 Worker failure 
• Detect failure via periodic heartbeats 
• Re-execute in-progress map/reduce tasks 

 Master failure 
• Single point of failure; Resume from Execution Log 

 Robust 
• Google’s experience: lost 1600 of 1800 machines once!, but finished fine  
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Summary 

 MapReduce 

• Programming paradigm for data-intensive computing 

• Distributed & parallel execution model 

• Simple to program 

• The framework automates many tedious tasks (machine selection, failure 
handling, etc.) 
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Zoom in: GFS in more detail 
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Motivation: Large Scale Data Storage 

 Manipulate large (Peta Scale) sets of data 

 Large number of machines with commodity hardware  

 Component failure is the norm 

 

 Goal: Scalable, high performance, fault tolerant distributed file 
system 
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Why a new file system? 

 None designed for their failure model 

 Few scale as highly or dynamically and easily 

 Lack of special primitives for large distributed computation 
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What should expect from GFS 

 Designed for Google’s application  
• Control of both file system and application 

• Applications use a few specific access  

patterns 
• Append to larges files 

• Large streaming reads  

• Not a good fit for 
• low-latency data access 

• lots of small files, multiple writers, arbitrary file modifications 

 Not POSIX, although mostly traditional 
• Specific operations: RecordAppend  
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Contents 

 Motivation 

 Design overview 

• Write Example 

• Record Append 

 Fault Tolerance & Replica Management 

 Conclusions 
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Components 
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 Master (NameNode) 

• Manages metadata (namespace) 

• Not involved in data transfer 

• Controls allocation, placement, replication 

 

 Chunkserver (DataNode) 

• Stores chunks of data 

• No knowledge of GFS file system structure  

• Built on local linux file system 

 
www.cse.buffalo.edu/~okennedy/courses/cs
e704fa2012/2.2-HDFS.pptx 
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GFS Architecture 
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Write(filename, offset, data) 
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RecordAppend(filename, data) 

 Significant use in distributed apps. For example at  Google production 
cluster: 
• 21% of bytes written 
• 28% of write operations  

 Guaranteed: All data appended at least once as a single consecutive byte 
range 

 Same basic structure as write 
• Client obtains information from master 
• Client sends data to data nodes (chunkservers) 
• Client sends “append-commit” 
• Lease holder serializes append 

 Advantage: Large number of concurrent writers with minimal coordination 
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RecordAppend (2) 

 Record size is limited by chunk size 

 When a record does not fit into available space,  

• chunk is padded to end  

• and client retries request. 
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Contents 
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Fault tolerance 

 Replication 
• High availability for reads 

• User controllable, default 3 (non-RAID) 

• Provides read/seek bandwidth 

• Master is responsible for directing re-replication if a data node dies 

 Online checksumming in data nodes 

• Verified on reads 
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Replica Management 

 Bias towards topological spreading 

• Rack, data center 

 Rebalancing 

• Move chunks around to balance disk fullness 

• Gently fixes imbalances due to: 

• Adding/removing data nodes 
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Replica Management (Cloning) 

 Chunk replica lost or corrupt 

 Goal: minimize app disruption and data loss 
• Approximately in priority order 

• More replica missing-> priority boost 

• Deleted file-> priority decrease 

• Client blocking on a write-> large priority boost 

• Master directs copying of data 
 

 Performance on a production cluster 
• Single failure, full recovery (600GB): 23.2 min 
• Double failure, restored 2x replication: 2min 
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Garbage Collection 

 Master does not need to have a strong 
knowledge of what is stored on each data node 
• Master regularly scans namespace 
• After GC interval, deleted files are removed from the 

namespace 
• Data node periodically polls Master about each chunk it knows 

of. 
• If a chunk is forgotten, the master tells data node to delete it. 
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Limitations 

 Master is a central point of failure 

 Master can be a scalability bottleneck 

 Latency when opening/stating thousands of files 

 Security model is weak 
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Conclusion 

 Inexpensive commodity components can be the basis of a large 
scale reliable system 

 Adjusting the API, e.g. RecordAppend, can enable large 
distributed apps 

 Fault tolerant 

 Useful for many similar apps 
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