
1 | 

BigData and Map Reduce 
VITMAC03 



2 | 

Motivation 

 Process lots of data 
• Google processed about 24 petabytes of data per day in 2009. 

 A single machine cannot serve all the data 
• You need a distributed system to store and process in parallel 

 Parallel programming? 
• Threading is hard! 

• How do you facilitate communication between nodes? 

• How do you scale to more machines? 

• How do you handle machine failures? 

2 



3 | 

MapReduce 

 MapReduce [OSDI’04] provides  
• Automatic parallelization, distribution 
• I/O scheduling 
• Load balancing 

• Network and data transfer optimization 

• Fault tolerance 

• Handling of machine failures 

 Need more power: Scale out, not up! 
• Large number of commodity servers as opposed to some high end 

specialized servers 

 3 

Apache Hadoop: 
Open source 

implementation of 
MapReduce 



4 | 

Typical problem solved by MapReduce 

 Read a lot of data 

 Map: extract something you care about from each record 

 Shuffle and Sort 

 Reduce: aggregate, summarize, filter, or transform 

 Write the results 

4 



5 | 

MapReduce workflow 

5 

Worker 

Worker 
Worker 

Worker 

Worker 

read 
local 

write 

remote 

read, 
sort 

Output 
File 0 

Output 
File 1 

write 
Split 0 
Split 1 
Split 2 

Input Data Output Data 

Map 
extract something you 
care about from each 

record 

Reduce 
aggregate, 

summarize, filter, 
or transform 



6 | 

Mappers and Reducers 

 Need to handle more data? Just add more Mappers/Reducers! 

 No need to handle multithreaded code  

• Mappers and Reducers are typically single threaded and 
deterministic 

• Determinism allows for restarting of failed jobs 

• Mappers/Reducers run entirely independent of each other 
• In Hadoop, they run in separate JVMs 

 

6 



7 | 

 

7 
http://kickstarthadoop.blogspot.ca/2011/04/word-count-hadoop-map-reduce-example.html 

Example: Word Count 

(2012)  

Average Searches Per Day: 
5,134,000,000 

1000 nodes: each node will process 
5,134,000 queries 



10 | 

MapReduce 
 

10 

Hadoop 
Program 

Master 

fork fork fork 

assign 
map 

assign 
reduce 

Worker 

Worker 
Worker 

Worker 

Worker 

read 
local 

write 

remote 

read, 
sort 

Split 0 
Split 1 
Split 2 

Input Data 

Map Reduce 

Output 
File 0 

Output 
File 1 

write 

Output Data 

Transfer 
peta-
scale 
data 

through 
network 



11 | 

 Split data and store 3 replica on commodity servers 

11 

Google File System (GFS) 
Hadoop Distributed File System (HDFS) 



12 | 

MapReduce 
 

12 

Master 
assign 
map 

assign 
reduce 

Worker 

Worker 
Worker 

Worker 

Worker 

local 

write 

remote 

read, 
sort 

Output 
File 0 

Output 
File 1 

write 
Split 0 
Split 1 
Split 2 

Split 0 

Split 1 

Split 2 

Input Data Output Data 

Map Reduce 

HDFS 
NameNode 

Read from 
local disk 

Where are the chunks 
of input data? Location of the 

chunks of input data 



14 | 

Failure in MapReduce 

 Failures are norm  in commodity hardware 

 Worker failure 
• Detect failure via periodic heartbeats 
• Re-execute in-progress map/reduce tasks 

 Master failure 
• Single point of failure; Resume from Execution Log 

 Robust 
• Google’s experience: lost 1600 of 1800 machines once!, but finished fine  

14 



18 | 

Summary 

 MapReduce 

• Programming paradigm for data-intensive computing 

• Distributed & parallel execution model 

• Simple to program 

• The framework automates many tedious tasks (machine selection, failure 
handling, etc.) 

18 



19 | 

Zoom in: GFS in more detail 

19 



20 | 

Motivation: Large Scale Data Storage 

 Manipulate large (Peta Scale) sets of data 

 Large number of machines with commodity hardware  

 Component failure is the norm 

 

 Goal: Scalable, high performance, fault tolerant distributed file 
system 

 

20 



21 | 

Why a new file system? 

 None designed for their failure model 

 Few scale as highly or dynamically and easily 

 Lack of special primitives for large distributed computation 

 

21 



22 | 

What should expect from GFS 

 Designed for Google’s application  
• Control of both file system and application 

• Applications use a few specific access  

patterns 
• Append to larges files 

• Large streaming reads  

• Not a good fit for 
• low-latency data access 

• lots of small files, multiple writers, arbitrary file modifications 

 Not POSIX, although mostly traditional 
• Specific operations: RecordAppend  

 

 
22 



24 | 

Contents 

 Motivation 

 Design overview 

• Write Example 

• Record Append 

 Fault Tolerance & Replica Management 

 Conclusions 

24 



25 | 

Components 

25 

 Master (NameNode) 

• Manages metadata (namespace) 

• Not involved in data transfer 

• Controls allocation, placement, replication 

 

 Chunkserver (DataNode) 

• Stores chunks of data 

• No knowledge of GFS file system structure  

• Built on local linux file system 

 
www.cse.buffalo.edu/~okennedy/courses/cs
e704fa2012/2.2-HDFS.pptx 



26 | 

GFS Architecture 

 

26 



28 | 

Write(filename, offset, data) 

28 

Client 

Secondary 
ReplicaA 

Secondary 
ReplicaB 

Primary 
Replica 

Master 
1) Who has the lease? 

3) Data push 

3) Data push 

3) Data push 

Data 

Control 

4) Commit 

2) Lease info 

6)Commit ACK 

6)Commit ACK 

5) Serialized Commit 

7) Success 
 



29 | 

RecordAppend(filename, data) 

 Significant use in distributed apps. For example at  Google production 
cluster: 
• 21% of bytes written 
• 28% of write operations  

 Guaranteed: All data appended at least once as a single consecutive byte 
range 

 Same basic structure as write 
• Client obtains information from master 
• Client sends data to data nodes (chunkservers) 
• Client sends “append-commit” 
• Lease holder serializes append 

 Advantage: Large number of concurrent writers with minimal coordination 
 

29 



30 | 

RecordAppend (2) 

 Record size is limited by chunk size 

 When a record does not fit into available space,  

• chunk is padded to end  

• and client retries request. 

 

30 



31 | 

Contents 

 Motivation 

 Design overview 

• Write Example 

• Record Append 

 Fault Tolerance & Replica Management 

 Conclusions 

31 



32 | 

Fault tolerance 

 Replication 
• High availability for reads 

• User controllable, default 3 (non-RAID) 

• Provides read/seek bandwidth 

• Master is responsible for directing re-replication if a data node dies 

 Online checksumming in data nodes 

• Verified on reads 

32 



33 | 

Replica Management 

 Bias towards topological spreading 

• Rack, data center 

 Rebalancing 

• Move chunks around to balance disk fullness 

• Gently fixes imbalances due to: 

• Adding/removing data nodes 

 

 

33 



34 | 

Replica Management (Cloning) 

 Chunk replica lost or corrupt 

 Goal: minimize app disruption and data loss 
• Approximately in priority order 

• More replica missing-> priority boost 

• Deleted file-> priority decrease 

• Client blocking on a write-> large priority boost 

• Master directs copying of data 
 

 Performance on a production cluster 
• Single failure, full recovery (600GB): 23.2 min 
• Double failure, restored 2x replication: 2min 

34 



35 | 

Garbage Collection 

 Master does not need to have a strong 
knowledge of what is stored on each data node 
• Master regularly scans namespace 
• After GC interval, deleted files are removed from the 

namespace 
• Data node periodically polls Master about each chunk it knows 

of. 
• If a chunk is forgotten, the master tells data node to delete it. 

35 



36 | 

Limitations 

 Master is a central point of failure 

 Master can be a scalability bottleneck 

 Latency when opening/stating thousands of files 

 Security model is weak 

 

 

36 



37 | 

Conclusion 

 Inexpensive commodity components can be the basis of a large 
scale reliable system 

 Adjusting the API, e.g. RecordAppend, can enable large 
distributed apps 

 Fault tolerant 

 Useful for many similar apps 

37 


