Documentation, reporting in
agile projects

Agile documentation

* From agile manifesto:

— Working software over comprehensive
documentation

— Customer collaboration over contract negotiation

 Documentation is not related to project
success

* Related agile roles: all, technical writers

Agile documentation

THAT MEANS NO MORE
PLANNING AND NO MORE
DOCUMENTATION. JUST

START WRITING CODE

AND COMPLAINING.

WERE GOING TO
TRY SOMETHING
CALLED AGILE
PROGRAMMING.

I'M GLAD THAT
IT HAS A WAS YOUR

NAME. TRAINING.

l (

12607 ©2007 Scott Adams, Inc./Dist. by UFS, inc.

www.dilbert.com scottadama®aol.com

© Scott Adams, Inc./Dist. by UFS, Inc.

Agile documentation

* Minimizing documentation is primarily good
— Extreme case: all documentation is waste

* Documentation
— is a requirement like any other, just another task
— is collaborative, written by the whole team

— captures high level information, details are waste
of time

— should be just good enough
— should be ready just-in-time

Documentation — depth

* Documentation should be simple: KISS, DRY
principles

 Documentation does not need to be perfect

 Fewest documents, least overlap, information
at the most appropriate place

Documentation — types

Contract model — technical interface for other
teams

Design decisions — optional, for the future

Requirements — optional, for large or distributed
teams

Executive overview, project overview, reports —
for the management

System — high level architecture, requirements
Support — training material, troubleshooting
User — API, user guide, support guide, training

Documentation — efficiency

 Document stable concepts, the “document late”
practice

— Not what we “plan to do”, but what we “did”
— Documentation needs not to be updated
— No waste of time on speculative ideas

— The documentation is several iterations behind the
development — documentation gap

* Most information is available in the tests that specify
— requirements
— architecture
— design

 Documentation generation from source code

Documentation — what

e Each document

— must have a purpose: process with no customers = no
documentation

— should focus on the needs its readers: comprehensive
documentation is rarely needed

— must have meaning and provide value: no value = no
documentation

e What
— critical information
— good things to know

— do not include obvious information or what the user is
supposed to know

Documentation — when

* When to document
— ideally at each iteration

— when it helps the communication of participants, with
external groups and with stakeholders

— when a model has to be kept up-to-date
— when it hurts, but just-in-time
* When to update
— With each new release
— When it hurts, leads to loss of productivity

* Yes, documents may not be consistent

Documentation — issues

Software vs. documentation development:
documentation does not provide new
functionality

Developers are not technical writers: when to
nand over the task

Documentation needs to be refactored as well,
nigh level documents are easier to update

Who is the audience? Self-documenting code is
not enough

Documentation — output format

* Publishing tools: XML based, Wiki based
e Source documentation

* Reports, audit: charts for supporting
management decisions

Self-documenting code

Assembly is for computers, source code is for
programmers

Self-documented code does not replace
documentation

Follow the conventions of the agile project
Principles:
— Commenting is waste of time — in most cases

— Don’t write code that is hard to understand

— Comment only code pieces that are hard to
understand

— Comments become out-of-date during refactoring

Self-documenting code

e Basic methods:

— Naming: names of functions, variables, constants
should explain purpose

— Extracting functions: identify purpose of a snippet

— Introduce variable: describe expression with a
variable name

— Code grouping: move related lines in same
snippet

— Interfaces: identify the set of exposed functions
— Exception instead of TODO comment

Self-documenting code

* Naming:
— Active word and subject: sendFile
— Indicate return value
— Avoid words like: “manage”, “make”, “handle”
— Indicate units: widthPx
— Avoid parameter names: a, i, S

— Named constants instead of values: maintained at
a single place

public static final int THE_ ANSWER =42;

Self-documenting code

e Extract functions

— Move a snippet (e.g. a step of an algorithm) to a
separate function to clarify purpose

— The helper function may be reused
width = (value — 0.5) * 16;

width = emToPixels(value);

int emToPixels(float ems) {
return (ems —0.5) * 16;

}

Self-documenting code

* |Introduce variable:

— Complex relational expressions within conditions may
not convey the intent of the expression

is_cold = temperature < 0;

if (is_cold) { ... }

— Clarify complex expressions

(x —x0)*(x —x0) + (y — y0)*(y — yO)
horizontalError = (x — x0)*(x — x0)
verticalError = (y — y0)*(y — yO)
horizontalError + verticalError

Self-documenting code

* Throw NotimplementedException instead of
TODO comments

* Grouping:

— Put related lines in the same snippet to signal which
lines must be maintained together

foo =1; foo=1;
bar (foo);
blah(); quux(foo);
xyz();
blah();
bar (foo); xyz();
baz(1337);

quux(foo); baz(1337);

Self-documenting code

* |Interfaces
— More meaningful function names

class Box {
public void setState(int state) {
this.state = state;
}
public int getState() {
return this.state;

}

class Box {
public void open() {
this.state = 1;
}
public void close() {
this.state = 0;

!
} public boolean isOpen() {
return this.state == 1;
Y

}

Refactoring techniques

* Extracting

— Component/Module/Service/Class:
* one component is doing the job of two

e same behavior in more components

— Interface: more components with the same set of
behavior

— Subcomponent: features used only in some instances

— Supercomponent: same attributes in several
components

— (Private) Method: grouped code fragment

Refactoring techniques

* Inlining
— Component/Module/Service/Class:

* no duplication prevented
* a component is not doing much

— Method: naming does not make the behavior
clearer

— Temporary variable: used once and naming of the
right hand side of the definition is clear

Refactoring techniques

* Moving
— Field: used in another component more frequently

— Method: uses fields of another component more
frequently

* Pull up in component hierarchy
— Constructor: same body
— Field: same field in subcomponents
— Methods: identical behavior in subcomponents

* Push down in component hierarchy
— Field: specific to subcomponents
— Method: relevant to subcomponents

Refactoring techniques

* Replacing
— Array with object
— Hash with object
— Field with association
— Constructor with factory

— Inheritance with delegation, delegation with
inheritance

— Temporary variable with call chains
* Change association directions

Documentation generation

* Code documentation is still necessary for the
reference guide (API)

e Document what a function does, but not how
it does that

— lists of usage
— side effects

— possible return values

— algorithms must not be documented

Documentation generation

* Lots of tools available: e.g. doxygen, JavaDoc

e Specially commented source

— Usually /** */ comments and @ prefixed tags
inside

e Output: usually web page

Reporting

* Forinforming product and project managers
about the

— progress of development
— quality metrics

— technical debt

* Report generation is a scheduled task
— Email notification

Reporting

 What does a report consist of?

— Data model object: software quality metrics collected
automatically by static code analysis tools, test results

— Layout objects: how to visualize the data (charts,
tables)

— Parameters: how to configure the visualization

— Scripts: that gather the data from the source code,
logs and test results

— The code itself to show the location of a technical
debt

Reporting

e Available tools for Ci
— SonarQube
— Lots of others

