Infrastructure-less networks

Csaba Simon

Dept. of Telecommunications and Media Informatics simon@tmit.bme.hu

Convergent Networks and Services (VITMM156)

Mobility management

Mobility

- Mobile station, mobile node (MN)
 - Moves from its usual, default network to a different subnetwork
 - Home Network -> Foreign Network
- If it keeps its old IP address
 - IP packets can not be routed to the MN
 - According to its IP address, the packets a routed to its Home NW.
- If it receives a new IP address.
 - It will be valid in the Foreign NW
 - packets addressed to this new IP addr. will reach the MN
 - The connections will be interrupted since they were setup based on the original IP address
- Several protocols have been proposed to handle this mobility issue

source: cisco.com / Cisco Mobile Router Module 2-6 / CEE_NET 2002

Mobility problem

- The Mobile Node represents the moving nodes
- "A" (home) router answers to node "B": ICMP unreachable
- "C" (foreign) router cuts the Mobile Node from its network
- A routing protocol does not allow the advertisment of the same IP addr from two different subnetworks

IETF standards for IP mobility management

- Internet Engineering Steering Group (IESG) / June 1996 / open standard November 1996
- Mobile IP
 - IETF standard for IP level mobility management (Layer 3 mobility)
 - RFC2002/3220 Mobile IP basic protocol
 - RFC2003 an RFC2004 tunneling
 - RFC2005 Mobile IP applicability
 - RFC2006 Mobile IP MIB
- Other RFCs
 - RFC1701 GRE Generic Routing Encapsulation
 - RFC3024 Reverse Tunneling for Mobile IP

Mobile IP (MIP)

- The mobile node originally has a home address
 - All of its communicating partners know this address
 - In a foreign network the routing problem is temporarly solved by the care-of address
- Mobility binding
 - A dedicated router (home agent HA) keeps records about the actual care-of-address
 - HA is responsible to reach the MN if it is not "at home"
- Advantages of Mobile IP
 - All the legacy applications can be kept, they need not to be modified
 - Network shifts (handovers) can be controlled by the home agents
 - Transparent to all access (L2) technologies

Mobile IP

- Mobile Node notifies its HA with a Registration Request [RRQ] message
 - HA forwards the packets to the Mobile Node
 - Using the Care of Address [CoA]
 - CoA assigned in the foreign (visited) network

Devices in the Mobile IP (MIP)

- 1. Mobile Node (MN): clients running the MIP.
 - Have a home address
 - 2. If they are located in a foreign network, they have a care-of-address CoA
- 2. Home Agent (HA): routers running the MIP.
 - 1. Besides acting as routers, work as localization registries, as well
- 3. Foreign Agent (FA): routers running the MIP.
 - 1. Help the registration of MNs in the foreign networks
 - 2. They are optional, if they are not present, the MN has more tasks to do
- 4. Correspondent Node (CN): a node connected to the MN
 - 1. A fixed node that communicates with the MN
 - 2. It does not know wether the MN runs a MIP or not

Mobile IP operations

- What does a MN in the foreign networks? How does it find its FA and CoA?
 - Mobility Agent Advertisements
 - Agents advertise themselves
- How does the HA know where has its MN gone?
 - Registration
 - MN updates its state at its HA if it gets a new CoA
- How does the HA send the packets to the MN?
 - Tunneling
 - HA adds a new IP header (using the CoA as source address) to the original packet

Mobile IP Activities Example

- HA updates the position of MN in its table
 - Sets up a tunnel until FA
 - FA "unpacks" the packet received from HA over the tunnel forwards it to MN

NEMO

NEMO

- Many MNs move together
 - Moving Network (MONE)
 - Network in motion (NEMO)
- Let's manage their mobility together
 - Moving Network Nodes (MNN)
 - The nodes forming the NEMO
- MR (mobil router) default gateway
 - Assures the connection between NEMO-members and outside world
 - MRs usually have the largest battery-lifetime, the largest bandwidth, etc.
 - E.g., a dedicated router installed on a vehicle, connected to the power system of the vehicle
- The MNNs must register at the MR
 - They belong to the subnetwork of the MR
 - They are "fixed" into that network, do not change their relative position to the MR – alternativley named Fixed Local Node (FLN)
- Advantages
 - only one mobility management event at network-change

Efficiency of NEMO depend on the environment it is deployed

- (Potential) disadvantage:
 - E.g., 100 MNs use cellular mobile internet access in a urban environment
 - If the MNNs do not join the NEMO
 - They manage their mobility individually
 - + Each of them will receive individually a BW specific to the technology
 - If the MNNs join a single NEMO
 - The bottleneck will be the MR's link capacity
 - If it uses the same public access, in the worst case an MNN will receive only 1/100th of the BW compared to the previous case
- (Potential) advantage:
 - E.g., the same 100 MNs request for access on a plane
 - Practically this means that the MN has no other access except an MR
 - In this case at least the mobility management is optimized over the sparse wireless resource

Mobile IP Terminology

- Foreign Agent (FA) [1 Hop Away from MR]
- Care of Address (CoA) [Tunnel Endpoint]
- Correspondent Node (CN)
- Security Association (SA) [SPI/Key]
- ICMP Router Discovery Protocol (IRDP) [Advertisement]
- Registration Request (RRQ)

Triangle routing

- the HA
 HA forwards the packet towards the MR,
 - using the HA-FA tunnel
- The packets from MR are addressed directly to CN

NEMO dual tunnel

- In the case of NEMOs there is an additional problem apart of the triangle routing
- MNNs register to the MR
- Every packet originally sent to MNN arrives to the Home Network of the MR
 - The MR will then forward it to the MNN
 - We already use a tunnel: on the Home NW MR path
- If the NEMO moves to a foreign network
 - Intervenes a new HA-FA

Where are MobileIP-like solutions used in current telecom networks?

Similarities in the Mobile IP and GPRS

Mobile IP and GPRS

Reverse Tunneling (bi-directional tunneling)

Reverse Tunneling

- Usually routers check only the destination address
- Firewalls take a look at the source address, as well
 - detecting the spoofing attacks
 - ingress filtering (based on the source address) if the packet is not coming from the subnet of the source address
- MIP often uses tunneling
 - E.g., the MNN is not coming from a subnet compatible with the source address of the header

Mobile Network Routing - datapath

According to its access, the NEMO is here – but the packet arrives from a different direction, thus the firewall considers it as an attack

Reverse Tunneling

- Reverse tunneling
 - avoids the "ingress filtering" problem
- We need a different tunnel to send the packet back on
 - Reverse tunneling or bi-directional tunneling
- HA de-capsulates the packet and forwards it according to the usual routing process
- The address of the packet "covers" the topology
 - The packet is coming from the subnet that corresponds to the source address

Mobile Network Routing – Reverse Tunneling

Routing Optimizations (RO)

Routing optimization (RO)

- Between the MR and CN
- LFN local fixed node (in the NEMO, registered to the MR)
- Prefix-based Binding
 Update every packet
 addressed to the LFN
 registered to MR1 is
 forwarded to MR1
- We eliminate the Home Agent (HA) of LFN from the path

Advantages of RO

- Nested NEMOs
 - E.g., two Personal Area Networks PANs (MR2, MR3) on a traing (MR1)
- Eliminating the tunneled path
 - Avoid walking on the redundant HA1-HA2-HA3 path
 - Solve the communication locally, within the MR1

Case study: NEMOs in the airline industry

Multi-Domained, Multi-Homed Mobile Networks

To Join to the Mobile Platform Internet (MPI) mailing list, E-mail to:

MPI-subscribe@multicasttech.com

Terry Davis – Boeing (terry.l.davis@boeing.com)
Will Ivancic – NASA Glenn (william.d.ivancic@nasa.gov)

How Do You Select and Implement the Routing Path?

In-Air Communication

- Many networks work in parallel on a plane
 - Different requirements
 - Aircraft Control Domain
 - Airline Information Services Domain
 - Passenger Information and Entertainment Services Domain
- Several times the same function is served by parallel connections
- Connected to ten, or more ISPs (internet service provider)
 - Autonomic (independent) connection/switch to/between the ISPs
 - The contracts with the ISPs are managed by the airports

ISO Aeronautics Telecommunication Network (ATN) Island Routing Domain Confederation

Independent radio interfaces on a plane

RO with two HAs

Use of VPN tunnels

If they are not prepared to handle VPNs, RO is not working ³

End of case study