Infrastructure-less networks

Csaba Simon

Dept. of Telecommunications and Media Informatics simon@tmit.bme.hu

Convergent Networks and Services (VITMM156)

Overview

Overview

- MANET Mobile Ad Hoc Networks
- Why MANET?
 - Where are they used?
 - How much need is for their deployment?
 - What about their future?

What does "Ad Hoc" mean?

- On the spot, temporarily, whithout preparation
- Ad hoc commission = a temporary project-team created for a specific –shortterm- task

Ad hoc networks

- Infrastructure-less network
 - No internet-connection
- There are no configured servers, services
 - AAA
- No subnets based on IP addresses
 - Problem for "classic" routing protocols
- There are no stable (=reliable) networking devices
 - States, trust, robustness
- Selforganizing
 - Peer-to-peer paradigm on network level (layer 3)
- Multihop
 - Communication (routing) over multiple hops (devices)

Routing

- Point-by-point
 - Hop-by-hop
- Mobile node
- = endpoint + router

Typical application fields

- Military
- Emergency

Peer-to-peer and the layers

Application: message, mcast

Transport/session: most of p2p

IP: ad hoc nw

Data link: X

Ad hoc networks and mobility

- Nothing is fixed => moves
 - Natural association

MOBILE AD HOC NETWORK = MANET

- Független, előre nem konfigurálhtó elemek
 - Various (unpredictable) movement patterns
- Grouping based on specific utilization areas

Development of the MANET topics

- Military use
 - Independent, mobile, unpredictable
 - Connection routing
 - Reliability, AAA
- Research
 - Advances in technology
 - Handheld devices, personal multimedia
 - PAN Personal Area Network
- Sensors
 - Usually not mobile
 - BAN Body Area Network, Vehicular, ...
- Global IP-based mobility
 - UMTS, WiMAX, LTE, LAN radio technologies Wireless LAN

MANET "topics"

MANET research topics

- Cross-layer optimization
 - Common optimization of several layers of the ISO/OSI model
 - Each level has an impact on the mobility
- Upper layers
 - Packet retransmissions, TCP (pckt losses, "uncertain" medium)
 - Security (expandable over each layer)
- Networking layer
 - Routing (dynamic topology, prefix-based routing not applicable)
- Datalink layer
 - MAC (shared medium access, wireless)
- Physical layer-> "mobility models"
 - Power saving
 - Radio technologies

Applications of MANETs

Pervasive monitoring of farm animals

Paper: http://www.bartosz.wietrzyk.name/files/ICN08-wietrzb.pdf?attredirects=0

Slides: http://www.bartosz.wietrzyk.name/files/ICN08-wietrzb.ppt?attredirects=0

- Extending the Internet access
 - Business case: community or operator operated
 - Rooftop antenna based
 - Extensions of cellular networks
- Various military applications

Several hardware and architecture vendors/operators

Typical Networking Scenario: redistributing the internet, extending the coverage

Mobility models

Mobility and MANET

- Different groups, interests, usage scenarios
- Different model, different problems, different solutions
- Relatively few deployments, few feedbacks
- New developments expected

Mobility models

Generic mobility model, uniform distribution, random movement

In real life scenarios cooperating people move within the same group

Nomadic mobility

- No activity during movement standby
- New address request, reconnection to previous partners, servers after movement

Slow mobility

- People walking in a conference hall
- University campus walking students, bikers
- Trainstations, large public institutions

Fast mobility

Cars, motorcycles, ...

Moving Groups

- Networks moving together
- Networks in Motion NEMO
- MONET Moving Networks
- E.g.: people on trains, metro, bus, airplane

Movement types

MANET MAC

Ad Hoc MAC - expectations

- Delay, jitter
- Efficiency
 - Channel capacity
- Power saving
 - How to handle the stand-by state
- Fairness
 - Medium access
- Quality of Service QoS
 - Priority handling

802.11 - WiFi

- Most used w'less MAC in LANs
- Straightforward option for MANETS
 - Laptops, PDAs, smartphones

Hidden terminal

- C starts to send data to D
- E is not aware of this communication it is hidden to it
- E starts sending to D, that node will experience interference

NAV = how much will remain silent the node

- Data packets sent just after a CTS
- Ack acknowledment upon successful reception

MANET (routing) categories

MANET (routing) protocols

MANET routing

- Two widely referenced MANETs
 - DSDV reactive, based on Bellman-Ford
 - AODV on demand, reactive