### **MANET Routing Protocols**

#### Csaba Simon

Dept. of Telecommunications and Media Informatics simon@tmit.bme.hu

Convergent Networks and Services (VITMM156)

## Original slides from

- Mobile Ad Hoc Networks: Routing, MAC and Transport Issues
- Nitin H. Vaidya
- University of Illinois at Urbana-Champaign
- nhv@uiuc.edu
- http://www.crhc.uiuc.edu/~nhv
- © 2000 Nitin Vaidya

Reactive routing protocol: AODV

## Flooding for Data Delivery

- Sender S broadcasts data packet P to all its neighbors
- Each node receiving P forwards P to its neighbors
- Sequence numbers used to avoid the possibility of forwarding the same packet more than once
- Packet P reaches destination D provided that D is reachable from sender S
- Node D does not forward the packet

#### Broadcast Storm Problem

- Flooding is used in many protocols, such as Dynamic Source Routing (DSR)
- Problems associated with flooding
  - collisions
  - redundancy
- Collisions may be reduced by "jittering" (waiting for a random interval before propagating the flood)
- Redundancy may be reduced by selectively rebroadcasting packets from only a subset of the nodes

# Ad Hoc On-Demand Distance Vector Routing (AODV)

- Some MANET routing protocols just flood the request without any "preparation"
  - In order to find the route back it have to include the visited hops in the header
  - The route follows the hop sequence specified in the header
  - Called "source routing", because the route is included in the packet headers right from the source till the destination
  - One example: Dynamic Source Routing (DSR)
- Resulting large headers can sometimes degrade performance
  - particularly when data contents of a packet are small
- AODV attempts to improve on such routing protocols by maintaining routing tables at the nodes, so that data packets do not have to contain routes
- AODV retains the desirable feature of DSR that routes are maintained only between nodes which need to communicate

#### **AODV**

- Route Requests (RREQ) are flooded in the network
  - A RREQ sent once is not broadcasted again
- When a node re-broadcasts a Route Request, it sets up a reverse path pointing towards the source
  - AODV assumes symmetric (bi-directional) links
- When the intended destination receives a Route Request, it replies by sending a Route Reply
- Route Reply travels along the reverse path set-up when Route Request is forwarded

## Route Requests in AODV





Represents a node that has received RREQ for D from S

## Route Requests in AODV



Represents transmission of RREQ

## Route Requests in AODV



Represents links on Reverse Path

## Reverse Path Setup in AODV



 Node C receives RREQ from G and H, but does not forward it again, because node C has already forwarded RREQ once

## Reverse Path Setup in AODV



## Reverse Path Setup in AODV



 Node D does not forward RREQ, because node D is the intended target of the RREQ

## Route Reply in AODV



Represents links on path taken by RREP

## Route Reply in AODV

- An intermediate node (not the destination) may also send a Route Reply (RREP) provided that it knows a more recent path than the one previously known to sender S
- To determine whether the path known to an intermediate node is more recent, destination sequence numbers are used
- The likelihood that an intermediate node will send a Route Reply when using AODV not as high as DSR
  - A new Route Request by node S for a destination is assigned a higher destination sequence number. An intermediate node which knows a route, but with a smaller sequence number, cannot send Route Reply

## Forward Path Setup in AODV



Forward links are setup when RREP travels along the reverse path



Represents a link on the forward path

## Data Delivery in AODV



Routing table entries used to forward data packet.

Route is *not* included in packet header.

#### **Timeouts**

- A routing table entry maintaining a reverse path is purged after a timeout interval
  - timeout should be long enough to allow RREP to come back
- A routing table entry maintaining a forward path is purged if not used for a active\_route\_timeout interval
  - if no is data being sent using a particular routing table entry, that entry will be deleted from the routing table (even if the route may actually still be valid)

## Link Failure Reporting

- A neighbor of node X is considered active for a routing table entry if the neighbor sent a packet within active\_route\_timeout interval which was forwarded using that entry
- When the next hop link in a routing table entry breaks, all active neighbors are informed
- Link failures are propagated by means of Route Error messages, which also update destination sequence numbers

#### Route Error

- When node X is unable to forward packet P (from node S to node D) on link (X,Y), it generates a RERR message
- Node X increments the destination sequence number for D cached at node X
- The incremented sequence number N is included in the RERR
- When node S receives the RERR, it initiates a new route discovery for D using destination sequence number at least as large as N

## Destination Sequence Number

- Continuing from the previous slide ...
- When node D receives the route request with destination sequence number N, node D will set its sequence number to N, unless it is already larger than N

#### Link Failure Detection

- Hello messages: Neighboring nodes periodically exchange hello message
- Absence of hello message is used as an indication of link failure
- Alternatively, failure to receive several MAC-level acknowledgement may be used as an indication of link failure

## Why Sequence Numbers in AODV

- To avoid using old/broken routes
  - To determine which route is newer
- To prevent formation of loops



- Assume that A does not know about failure of link C-D because RERR sent by C is lost
- Now C performs a route discovery for D. Node A receives the RREQ (say, via path C-E-A)
- Node A will reply since A knows a route to D via node B
- Results in a loop (for instance, C-E-A-B-C)

## Why Sequence Numbers in AODV



Loop C-E-A-B-C

## Optimization: Expanding Ring Search

- Route Requests are initially sent with small Time-to-Live (TTL) field, to limit their propagation
  - DSR also includes a similar optimization
- If no Route Reply is received, then larger TTL tried

## Summary: AODV

- Routes need not be included in packet headers
- Nodes maintain routing tables containing entries only for routes that are in active use
- At most one next-hop per destination maintained at each node
  - DSR may maintain several routes for a single destination
- Unused routes expire even if topology does not change

Proactive routing protocol: DSDV

#### Proactive Protocols

- Most of the schemes discussed so far are reactive
- Proactive schemes based on distance-vector and link-state mechanisms have also been proposed

## Link State Routing

- Each node periodically floods status of its links
- Each node re-broadcasts link state information received from its neighbor
- Each node keeps track of link state information received from other nodes
- Each node uses above information to determine next hop to each destination

# Destination-Sequenced Distance-Vector (DSDV)

- Each node maintains a routing table which stores
  - next hop towards each destination
  - a cost metric for the path to each destination
  - a destination sequence number that is created by the destination itself
  - Sequence numbers used to avoid formation of loops
- Each node periodically forwards the routing table to its neighbors
  - Each node increments and appends its sequence number when sending its local routing table
  - This sequence number will be attached to route entries created for this node

# Destination-Sequenced Distance-Vector (DSDV)

Assume that node X receives routing information from Y about a route to node Z



 Let S(X) and S(Y) denote the destination sequence number for node Z as stored at node X, and as sent by node Y with its routing table to node X, respectively

## Destination-Sequenced Distance-Vector (DSDV)

Node X takes the following steps:



- If S(X) > S(Y), then X ignores the routing information received from Y
- If S(X) = S(Y), and cost of going through Y is smaller than the route known to X, then X sets Y as the next hop to Z
- If S(X) < S(Y), then X sets Y as the next hop to Z, and S(X) is updated to equal S(Y)