

Budapesti Műszaki és Gazdaságtudományi Egyetem (BME) Távközlési és Médiainformatikai Tanszék (TMIT)

IMS – IP MULTIMEDIA SUBSYSTEM

Markosz Maliosz PhD

maliosz@tmit.bme.hu

Convergent Networks and Services (VITMM156) 2015. 02.18., 03.02.

Introduction

- What is Your preferred tool for phone calls?
 - landline phone (PSTN)
 - mobile phone
 - VoIP phone
 - Skype
 - other

Changing Trends

- Competitive environment
 - widened capabilities of service providers and services
 - Iandline, mobile, satellite...
 - voice, data, video...
 - new entrants
 - using a network infrastructure without investment costs
 - VoIP, Skype, etc.
 - network access does not restrict the provided services any more
 - requirements for service providers
 - outstanding service provisioning
 - continuous development and renewal

Evolution of Mobile Telephony

- Increasing number of services and multimedia content available
- Personalization of services
- Internet services (e-mail, web browsing, instant messaging, multimedia call, presence, etc.) available on mobile too
- Internet as a new broadcasting media
- Demand for Internet services on mobile devices with "telecom grade" quality
 - Reliability
 - Quality of Service
 - Safe communication

IMS – Short Overview

- Provisioning of IP multimedia services (Rich communication services) with uniform management
 - web
 - email
 - instant messaging
 - presence
 - videoconference
- Ubiquitous service over a variety of access and transport network technologies
 - fixed-mobile convergence (FMC)
- Using Internet standards (IETF protocols)
 - Session Initiation Protocol SIP: a key signaling protocol
 - creating, modifying and terminating sessions consisting of media streams
- High quality telecom services over packet switched network
- Operators keep the control over the services
 - "operator friendly" ☺

IMS advantages

- Any...
 - kind of access network (fixed, mobile, wireless) independent of core network
 - kind of media, or combinations of them (voice, text, image, video)
 - kind of device (IMS terminals)
- open, standardized interfaces
- support for legacy systems through gateways (e.g. PSTN)
- support for roaming
- uniformity
 - unified subscriber database
 - one subscriber profile
 - Single Sign-On
- isolation of application and session control layers
 - several applications, or combination of them (service blending) can be active at the same time

History of IMS

- Original goal: Provisioning "Internet services" over GPRS (General Packet Radio Service) networks
 - 3GPP (3rd Generation Partnership Project)
 - telecommunications standard development organization union
 - Rel-5, 2002 /Rel = release/ (latest: Rel-13)
- Extending to other networks in later releases access with any terminal
 - 3GPP, 3GPP2, ETSI TISPAN (European Telecommunications Standards Institute Telecommunications and Internet converged Services and Protocols for Advanced Networking – main goal is the specification of NGN)
- 2010. GSMA (GSM Association) VoLTE (Voice / and SMS/ over LTE) initiative – based on IMS
 - advances the usage of IMS

Business Models

- Two different "worlds"
 - Telco operators
 - monolithic and closed
 - Internet
 - shared and open
 - standalone applications
- Result: semi walled garden
- Interests
 - Network providers
 - universal packet switched network for everything (minimizing operational expenditures)
 - do not want to be omitted form the value chain by transmitting only bits (avoid being bit pipes)
 - provisioning services is the profitable part
 - Service providers
 - Internet modell is suitable
 - finding new pay services

Business Models

- Internet
 - network provider is only transferring bits (bit pipe)
 - all kinds of services/applications can be provisioned over it
 - for a each service separate
 - login
 - payment data
 - invoice
- Telecom
 - network and service provider
 - limited services
 - third party is not allowed to provide services
 - single login, invoice, payment data
- Converged business model (semi walled garden)
 - network provider is a service broker
 - third party services are also available: broader service selection
 - invoicing by network provider, keeping certain percentage; remaining amount transmitted to third party service provider
 - single login, invoice, payment data
 - ⇒ service platforms

Service Platforms

NGN – IMS

- Unified transport core network for all kinds of services
 - multi protocol
 - multi access
 - substantially simpler network operation and management

IMS functional architecture

IEC (International Engineering Consortium) Newsletter, www.iec.org

HSS – Home Subscriber Server PDF – Policy Decision Function SCIM – Service Capability Interaction Manager PDG – Public Data Gateway BGCF – Border Gateway **Control Function** MRF – Media Resource Function MGCF – Media Gateway **Control Function** MRFP – Media Resource Function Processor SGW – Signalling Gateway MRFC – Media Resource **Function Controller** RACS – Resource and Admission Control Subsystem MGW – Media Gateway **IBCF** – Interconnection **Border Gateway** Function TrGW – Translation Gateway **BAS** – Broadband Access Server WAG – WLAN Access Gateway

IMS core network architecture

IMS core network

- CSCF functions provided by SIP proxies
 - P-CSCF (Proxy Call Session Control Function)
 - first signaling point of contact for the UE
 - SIP message handling
 - compress and decompress
 - may establish secure channel to UE
 - checking correctness of messages
 - S-CSCF (Serving Call Session Control Function)
 - session control for services
 - SIP registrar function: handles registrations
 - SIP proxy function: routing of signaling messages
 - I-CSCF (Interrogating Call Session Control Function)
 - gateway to the network at the border of the administrative domain
 - inter-domain SIP signaling
 - its address is published in the DNS of the domain, therefore remote nodes can reach it and use it as a forwarding point
 - it queries the HSS to retrieve the address of the S-CSCF that will be assigned as a serving S-CSCF for the user

Home Subscriber Server– HSS

- Contents
 - user identities, subscriber data
 - subscriber profiles, enabled services
 - call state, location information
- Subscription Locator Function (SLF) is required when multiple HSSs are used

Media resources and gateway control

- Media resources
 - Multimedia Resource Function Processor (MRFP)
 - media plane node
 - provides resources of the bearer packet switched network to control by MRFC
 - handles media streams
 - mixing
 - processing, transcoding
 - Multimedia Resource Function Controller (MRFC)
 - signaling plane node: controls the media resources of MRFP node
 - interprets messages coming from S-CSCF and Application Servers
- Gateways
 - Breakout Gateway Control Function (BGCF)
 - routing based on telephone numbers
 - in case of call termination in circuit switched (CS) network (e.g. PSTN, PLMN)
 - Media Gateway (MGW)
 - interfaces with the media plane of the CS network by converting/transcoding media streams
 - Signalling Gateway (SGW)
 - lower level protocol conversion
 - Media Gateway Control Function (MGCF)
 - control of SGW and MGW

IMS protocol suite

Session Initiation Protocol (RFC3261)

- signaling protocol
 - text based
 - extensible
 - media transfer is not part of SIP
- session interactive information interchange, conversation
 - creating, modifying and terminating
 - codec negotiation
- SIP registrar
 - location service by linking IP addresses and SIP URI
 - processing REGISTER requests
- SIP proxy
 - intermediary entity
 - can provide registrar function
 - routes requests
 - handles only signaling, media stream is not forwarded
- NAT traversal problems

SIP session handling

IMS and "plain" SIP (RFC3261) comparison

- IMS added functions
 - managing subscribers, controlling services, single sign on
 - QoS/media authorization and resource control, charging
 - roaming, interworking between different networks, conference call, etc.
- Most of these functions are defined by IETF extensions
 - Update (RFC331), Preconditions (RFC3312), PRACK (RFC3262), Offer/Answer (RFC 3264),
 - QoS/Media Authorization (RFC 3313), Event Notification (RFC 3265),
 - Tel-URIs (RFC 2806), 3GPP P-Headers (RFC3455), Service-Route (RFC3608),
 - Asserted ID (RFC3325), DNS-Support (RFC 3263), SigComp (RFC3320, RFC3485, RFC 3486),
 - ENUM (RFC2916, RFC2915), SIP Refer (RFC3515), Digest AKA (RFC 3310),
 - Path-Header (RFC 3327), Security-Mechanism-Agreement (RFC3329), etc.

DIAMETER protocol functions

- DIAMAETER is the evolved version of RADIUS (Remote Authentication Dial In User Service) (IETF)
 - binary client-server protocol
 - base protocol + extensions
 - better security and easier extensibility
 - better scalability and notification of errors
- <u>Authentication:</u> identifying a user, and granting access to the network
- <u>Authorization</u>: determining what types or qualities of activities, resources, or services a user is permitted to use
- <u>Accounting:</u> measures the resources a user consumes during access; collecting, storing and forwarding traffic usage data
- An AAA server collects and stores the data sent by their clients, and sends back statistics by the request of the clients
 - user login timestamp
 - service time counter
 - number of sent/received packets, etc.
- Advantages
 - services controlled by the operator
 - end-to-end provider responsibility
 - anonymous or unauthorized user is not allowed to enter the network

User identities

- one or more public id: IP Multimedia Public Identitity IMPU
 - used to route SIP messages
 - either SIP URI (Uniform Resource Identifier) (RFC 3261), e.g.: sip:name@domain.com
 - or TEL URI (RFC 3966), e.g.: tel:+15551234567
 - In the HSS all IMPUs, in the mobile device holding an IP Multimedia Services Identity Module (ISIM) at least one is stored
 - can be portable
- exactly one private id: IP Multimedia Private Identitity IMPI
 - permanently allocated global id, assigned by the home network operator
 - In NAI form (Network Access Identifier, RFC 2486), e.g.: name@domain.com
 - used only for registration and AAA
 - stored in the HSS and on the ISIM within the mobile device

Service identities

- Public Service Identitity PSI
 - used for routing of SIP requests
 - not applicable for AAA, no private id is associated
 - either SIP URI (Uniform Resource Identifier) (RFC 3261), e.g.: sip:presence@domain.com
 - or TEL URI (RFC 3966), e.g.: tel:+15551122335

IMS and QoS

- Network layer provides QoS for services
 - access network, e.g. UMTS
 - packet switched core network (e.g. with Intserv, DiffServ, etc.)
- Four QoS classes in UMTS
 - conversational
 - streaming
 - interactive
 - background
- PDP (Packet Data Protocol) context
 - data structure stored in SGSN and GGSN if subscriber is active
 - includes subscriber's IP address, IMSI, etc. and QoS parameters, including the QoS class
 - it is activated at first attachment of IMS terminal
- How it is used with IMS?
 - SCSF extracts QoS parameters of connection from the SIP signaling (e.g. codec, bandwidth)
 - no direct control over the media stream and bearer network
 - ⇒ intermediate function is required: Policy Decision Function
- Policy Decision Function
 - Mediation between the QoS level defined at application layer (IMS) and the access bearer network (data plane)
 - Placed between P-CSCF and BAS/PDG/GGSN in the architecture

IMS and QoS

- PDP context activation
 - which codec is negotiated in SDP part of SIP INVITE and 200 OK
 - success of PDP activation
- Preconditions
 - client can declare what preconditions are required to create a call, e.g. voice quality
 - if bearer service is not able to reserve the required resources then session establishment does not take place
 - SIP/SDP extension: RFC 3312

```
v=0
o=alice 2890844526 2890844526 IN IP4 host.atlanta.example.com
s=
c=IN IP4 host.atlanta.example.com
t=0 0
```

```
m=audio 49170 RTP/AVP 0 8 97
a=rtpmap:0 PCMU/8000
```

SDP offer example (audio+video):

```
a=rtpmap:8 PCMA/8000
a=rtpmap:97 iLBC/8000
m=video 51372 RTP/AVP 31 32
a=rtpmap:31 H261/90000
a=rtpmap:32 MPV/90000
```

v= protocol version o=<username> <session id> <version> <network type> <address type> <address> s= session name c=<network type> <address type> <connection address> t= time the session is active m=<media> <port> <transport> <format list> a=<attribute> a=rtpmap:<payload type> <encoding name>/<clock rate> [/<encoding parameters>]

 (1) INVITE SDP1	
<pre> <(2) 183 Session Progress SDP2-</pre>	
***	***
R(3) PRACK	-*R*>
* 臣 *	*E*
<pre> <-*S*(4) 200 OK (PRACK)</pre>	-*S*
E	*E*
R	*R*
V	*V*
A	*A*
T	*T*
I	*I*
<pre> * ○*</pre>	*0*
N	*N*
* * *	***
* * *	
* * *	
(5) UPDATE SDP3	>
 <(6) 200 OK (UPDATE) SDP4	
<(7) 180 Ringing	
(8) PRACK	>
<(9) 200 OK (PRACK)	
 	Ì
<(10) 200 OK (INVITE)	
(11) ACK	·>
	i i

В

BME/TMIT

А

Charging

- Accounting (collecting and sending usage data)
 - Control plane (IMS): parties, start time of session, session duration, etc.
 - Data plane usage of resources: sent/received bytes, PDP context, etc.
- Correlation between the planes
 - unified charging
- Accounting data
 - home/visited network: usage of network resources
 - home network: charging, billing
- IMS charging archiecture
 - Offline charging (postpaid)
 - All SIP signaling entity (P-CSCF, I-CSCF, S-CSCF, BGCF, MRFC, MGCF, AS) sends accounting information to the CDF (Charging Data Function) of the domain
 - Online charging (prepaid, or real-time controlled postpaid)
 - Interconnection between S-CSCF and Session Charging Function (SCF)
 - if no credit remains, SCF notifies S-CSCF, which terminates the call

Scalability

- Signaling
 - size and rate of messages
 - passing many intermediate nodes (proxy based arch.)
 - message multiplication (e.g. NOTIFY)
 - CPU processing time
- Architecture
 - planned for high number of subscribers
 - modular design
 - multiple CSCFs, HSSs
- Load balancing
 - by resolving CSCF and AS addresses with DNS
 - Multiple HSSs: Service Locator Function
 - In S-CFCS: iFC (initial Filter Criteria) –according to user profiles (static)
 - Application Servers (AS)
 - cost of SIP communication
 - difficult coordination among distributed and stateful App. Servers

IMS Call Flows

- <u>http://www.eventhelix.com/ims</u>
- Routing related headers in SIP messages
 - Via: proxies add a Via header field value containing their address
 - Route:
 - used to force routing for a request through the listed set of proxies
 - initial request:
 - UE: received values of Service-Route header from P-CSCF
 - CSCF: next hop or the received Path header value
 - subsequent requests:
 - Record-Route headers
 - Record-Route: stays in the signaling path for subsequent signaling messages
 - Service-Route: UE (or P-CSCF) receives and saves the address of S-CSCF at registration
 - Path: P-CSCF inserts its address at registration, S-CSCF saves it, UE receives all messages through this proxy address

Service profiles

- Dynamic profile based application server selection
- Service profile
 - list of iFCs with assigned priorities
- Filtering and routing by S-CSCF
 - Initial Filter Criteria (iFC)
 - stored in HSS as part of user profile
 - list of subscribed services
 - contains:
 - SIP URI of AS to which the request should be routed
 - Trigger Point: logical expression (AND, OR NOT) related to SIP requests
 - set of Service Point Triggers
 - » Request-URI equals <value>
 - » SIP Method equals <value>
 - » SIP Header matches <regular expression>
 - » Session Case is one of [originating, terminating, terminating to unregistered user]
 - » SDP Line [<line name>] matches <regular expression>
 - if Trigger Point is true send request to AS
 - only initial request is matched
 - a Default Handling element

Initial Filter Criteria

• An example:

Application Servers (AS)

- IMS gives an architectural framework for service provisioning
- Services are implemented by Application Servers, not by IMS
- Application Servers
 - are owned by operators or third parties
 - can exploit IMS provided functions
 - can interact with S-CSCF and HSS
- Services
 - Calling Line Identification presentation/restriction
 - Call Hold, Waiting, Forwarding, etc.
 - Conference call
 - SMS, MMS
 - Voicemail
 - Location Based Services LBS
 - Presence information
 - Instant messaging
 - etc.

Application Servers

- Types
 - SIP AS
 - native IMS
 - based on Internet technologies
 - simple service composition
 - OSA (Open Service Access)
 - via OSA-SCS (Service Capability Server) gateway
 - to make use of network functionality
 - Parlay API
 - CAMEL (Customized Applications for Mobile network Enhanced Logic) AS
 - via IM-SSF (Service Switching Function) gateway
 - existing intelligent services in 2G/3G networks

Application Servers

- Operating modes
 - SIP User Agent, as endpoint
 - e.g. terminating: voice mail
 - e.g. originating: messaging
 - SIP proxy server (without service)
 - SIP redirect server
 - SIP B2BUA mode (Back to Back User Agent, concatenation of 2 UAs)
 - full control over SIP dialogs
 - functions
 - Telephony AS (TAS):call management (call routing, forwarding; call waiting, usage data collection, conference call, etc.)
 - Non-telephony AS: presence, IM, etc.
 - 3rd party call control (3PCC) B2BUA
 - e.g. click to dial

Service enablers and unified functions

- Reusable building blocks for different services/applications
- Special Application Servers with general function
- Service enablers:
 - presence: status information
 - storing and distributing status information
 - handling subscriptions
 - group/list management
 - list of contacts
 - list of blocked contacts
 - chat groups
 - location based information
 - instant messaging
- Unified functions
 - provisioning
 - management
 - billing

Presence service model

- RFC 2778
- Presentity = presence + entity
 - register
 - publish
- Watcher
 - fetch, poll
 - subscribe

BME/TMIT

Services 1.

- Presence
 - active phone book: online/offline + details:
 - busy, out of office, do not disturb, etc.
 - location, how to contact, etc.
 - watcher is notified at status changes, e.g. principal goes online
 - what kind of media types can be sent/received
 - not only for humans, but for services and devices too, e.g.
 - result of sport event
 - home surveillance system
- Instant Messaging IM
 - real-time
 - can be sent/received by devices, application servers too (e.g. control of a device, receiving notification)
 - combined with presence service

Services 2.

- Group messaging
 - ad-hoc groups
 - many-to-many communication
- Multimedia conference call
 - voice, video, file sharing
- Push to Talk (PTT) over Cellular (PoC)
 - Open Mobile Alliance (OMA)
 - half-duplex communication, i.e. walkie-talkie
 - might be a1-to-1 person comm., but usually a 1-to-many synchronous comm.
 - integrated with group management and (optionally) presence services
 - e.g. a group of people travelling with several cars
 - the PoC server handles the signaling and the media too, which is a bit confusing
- Home Control, Interactive games, etc.

IMS deployment

- IMS core network vendors: Ericsson, Alcatel Lucent, Nokia Siemens (NSN), Huawei, etc.
- Hungary
 - Hungarian Telecom and T-Mobile: 7/2006, Comverse + Huawei, FMC
- Survey shows operators plan to deploy VoLTE in earnest by 2015
 - major deployments in the U.S., China, and Japan, where the mobile markets are large and operators are competitive

Top Drivers for Operators Migrating to IMS

© Infonetics Research, IMS Service Strategies, Product Features, and Vendor Leadership: Global Service Provider Survey, June 2013 Cumulative Percentage of Operators by year they anticipate starting IMS Deployment, 2009 and 2012

⁽c) 2012 Alan Quayle Business and Service Development

IMS critics

- cynical name resolution: Internet Monetarizing System
- IMS promotes rapid app. development
 - but where are the new, income generating applications?
 - alternatives: web applications (over the top /OTT/ of the network)
 - do users demand controlled QoS, safe communication, mobility, interworking between operators?
- most deployed systems are limited in functions
- exotic blended services are not emerging, e.g. that combine presence, location and user preferences
- from business perspective it is ideal for new entrants, but not necessarily means immediate cost reduction for legacy operators
- not enough IMS-capable terminals?
- too complicated system (but in return provides value added services)

IMS and Internet applications

- IMS: Rich Communication Services
 - operator services: video and voice call, SMS, MMS, chat, group messaging, file transfer, even combined

- brand name: joyn (GSMA): talk, chat, share videos, photos and files (2012)
 - operators: Deutsche Telekom, Movistar Spain, Orange Spain, Vodafone Germany, Vodafone Spain, MetroPCS (USA), Korean operators
 - slow expansion
- What are the main advantages compared to Internet applications?
 - provisioned by the network operator
 - interoperability: operators, devices
 - without app download, install and user registration
- Critic
 - same services as the Internet apps
 - slow preparation of standards and recommendations
 - all operators provision the same services (no differentiation)
 - rather a fallback service
- Internet:
 - pl. Skype, Viber, Google Talk, Facebook messenger, WhatsApp Messenger, Twitter, etc.
 - quicker reactions to changes
 - pl. Google Wave, Buzz, Google+ : just launch and analyze usage statistics, if not successful then discontinue the service