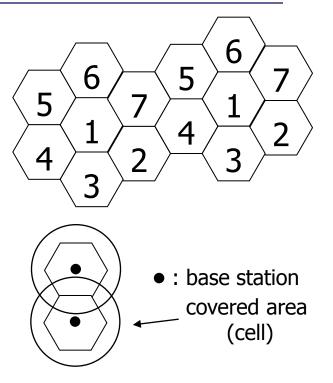
Communication Networks 2


Mobile networks

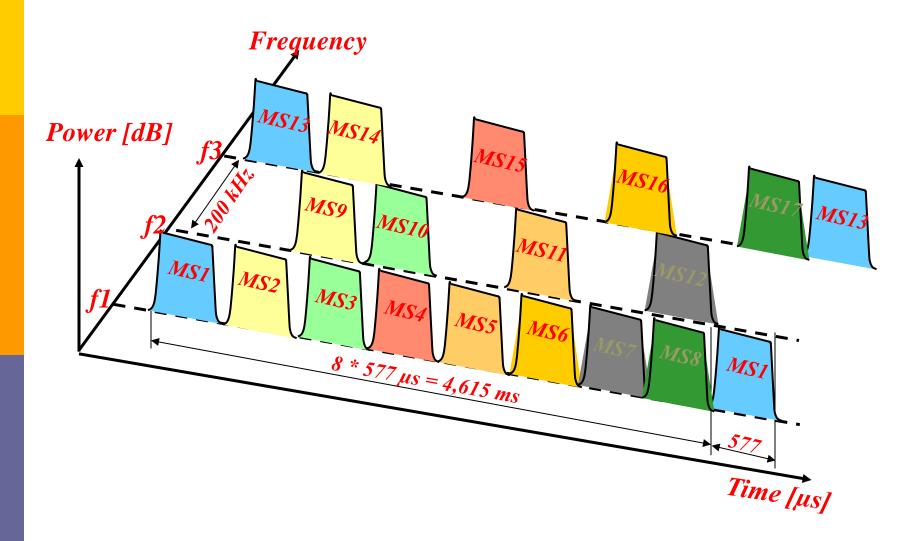
Gusztáv Adamis BME TMIT 2016

Earth surface mobile networks

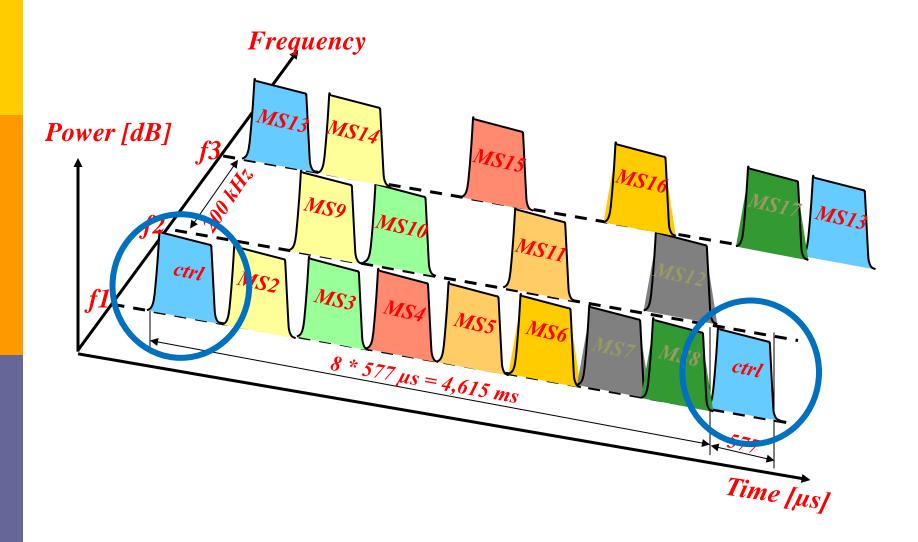
- Cellular concept:
 - frequency range is divided into several (e.g. 7) parts
 - cellular coverage (see picture)
 - same frequency: distance of 2 cells no interference
 - this is only theoretical in practice more complicated situations (base station in the "corner" of the cell, cell divided into several sectors, etc.)
- Size of a cell?
- Advantages of small cells:
 - small transmitter power enough
 - minimisation of physiological risk
 - smaller power consumption
 - higher traffic density
- Disadvantages of small cells :
 - lot of base stations needed
 - more expensive
 - nasty

1G systems

- IG: first generation mobile telecommunication systems
 - end of 1970s / beginning of 1980s
 - Analogue systems
 - Lot of not compatible systems
 - E.g.: NMT (Nordic Mobile Telephone System)
 - Scandinavia since 1981
 - In Hungary 1990-2003. (30th June) (Westel 0660)
 - Typically around 450 MHz frequency
 - Relatively large cells, with 30-50 km of diameter
 - Poor voice transmission quality, few services
 - More examples for 1G systems:
 - USA: Advanced Mobile Phone Service (AMPS),
 - GB: Total Access Communication System (TACS)
 - Germany: B-Network (C450)


- World-wide spread, because:
 - research-development in proper time, quickly (4 years)
 - open, improvable standard (ETSI)
 - in Europe uniform from the beginning (not in USA \otimes)
 - global system (roaming)
 - concept of SIM card is attractive (data of subscribers equipmentindependent)
 - only the caller pays (in USA both parties)
 - pre-paid (later from phase 2)
 - 900 MHz: countrywide coverage possible
- Incremental development:
 - phase 1 (1991)
 - voice transmission, SIM concept, SMS, roaming, encryption of voice, 9.6 kbps data transmission
 - phase 2 (1995)
 - backward compatibility, calling number presentation, call hold, call waiting, conference call, half rate (speed) codec, etc.
 - phase 2+ (1998)
 - mainly improvement in data transmission (HSCSD, EDGE, GPRS), pushto-talk, virtual private networks, improvement of SIM, enhanced codecs, etc.

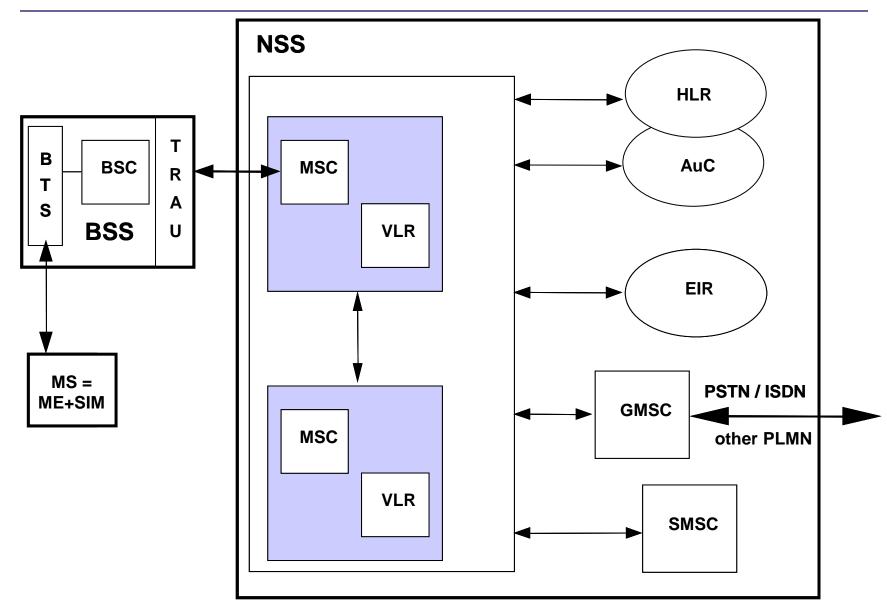
Digital transmission:


- voice codec in terminal
- integrated services network: voice + data transmission
- Radiation output: max. 2W, adaptive: the terminal transmits with the minimally necessary power
 - save the battery
 - minimisation of physiological risk
 - not to disturb other cells
- Diameter of cells: 0,5 35 km
 - depends on frequency, traffic, propagation
 - design decision

- Radio access: FDMA+TDMA (Frequency/Time Division Multiple Access)
- **GSM 900 (Primary-GSM, P-GSM)**
 - mobile station (uplink): 890-915 MHz,
 - base station (downlink) 935-960 MHz
 - in this frequency range the smaller frequency suffers smaller attenuation, so it requires less power -> mobiles have the smaller frequency band
 - 1 band = 25 MHz, 1 carrier = 200 kHz: 124 carriers (FDMA)
 - shared by every service provider
 - in Hungary: appr. 30 frequencies/service provider in this band
 - 8 time slots/carrier (TDMA)
 - 30*8/10 ≈ 24 channels / cell
 - □ 10: typically \approx 10 different frequencies used in cells (more realistic than 7 as we could see on slide 4)
 - with Half Rate encoding: twice as much
 - max 35 km cell diameter: 900 MHz waves follow the surface of the Earth more or less =>
 - countrywide coverage

FDMA – TDMA access

FDMA – TDMA access


- **GSM 1800**
 - mobile: 1710-1785 MHz, base station: 1805-1880 MHz
 - 1 band = 75 MHz (three times larger capacity)
 - BUT: worse wave propagation
 - propagates straight
 - attenuates more quickly
 - not (so...) suitable for countrywide coverage, only for small cells (with high traffic)
- **Several other:** (not to learn, but interesting)
 - Extended-GSM 900, E-GSM: +10 MHz/direction: +50 carriers
 - R-GSM: Railways GSM: 876-880/921-925 MHz
 - GSM 1900: 1850-1910/1930-1990 MHz (USA)
 - GSM 850: 824-849/869-894 MHz (USA)
- Dual band equipments: automatically select/change frequency range
 - recently three band (900/1800/1900) and four band equipments (850/900/1800/1900)

GSM handover/handoff

GSM: circuit switching

- When the mobile station enters an other cell: handover (handoff)
 - connection continuous
 - it can theoretically happen:
 - by control of the mobile station: measures, when the signal of the neighbouring cell is stronger
 - by control of the network: network decides on the signal strength and/or other pieces of info (e.g. load of the cell)
 - by control of the network, with the help of mobile station: network asks the mobile station to send signal strength info, but the decision is made by the network – this is in GSM
 - this way the network can enter the mobile station later if the "new" cell is overloaded

Architecture of GSM networks

Base Station Subsystem (BSS)

Base Transciever Station (BTS)

- One or more elementary transmitter/receiver
- Transcoder/Rate Adapter Unit, TRAU
 - **FR**, HR, EFR codec \Leftrightarrow 64 kbps PCM
 - Full Rate (13 kbps), Half Rate (5.6 kbps), Enhanced Full Rate (12.2 kbps, but better than FR)
 - Rate adaptation also at data transmission: 14.4 kbps kbps

Base Station Controller (BSC)

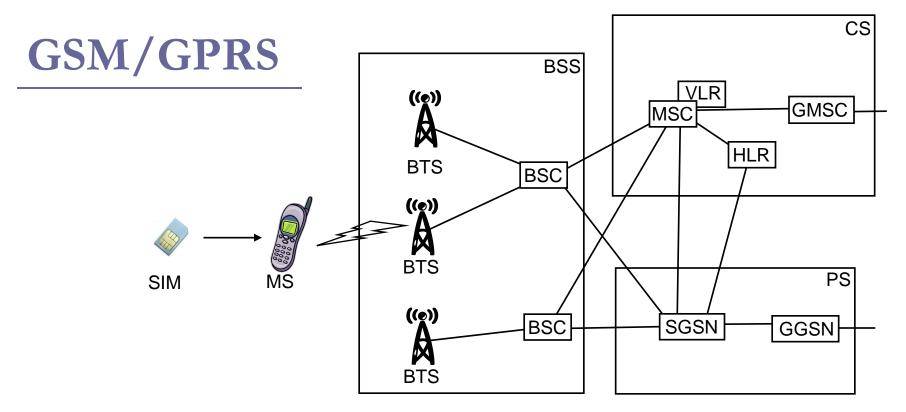
- Controls one or *more* BTSs
- Radio channel assignment
- Handover control

Network and Switching Subsystem

- Mobile Switching Centre (MSC)
 - a digital switch
 - with mobile specific extensions
 - authentication
 - location management (VLR)
 - inter-BSC handover
 - roaming
- Visitor Location Register (VLR)
 - Built-in the MSC
 - Stores temporarily some parts of the HLR info about the currently served mobile stations
- Home Location Register (HLR)
 - subscriber data, subscription information (services), current location
 - one HLR in every network
- Authentication Centre (AuC)
 - Typically integrated with HLR
 - It verifies that the subscriber is the same in reality as he is proposed to be

GSM services – 1

Voice transmission


- speed of codec 13 kbps (later: 5.6 kbps)
- compromise: poorer quality of voice, but higher utilisation of frequency
- SMS (Short Message Service)
 - max. 160 character (1 character = 7 bits)
- Data transmission
 - originally 9.6 kbps, later 14.4 kbps
- HSCSD (High Speed Circuit Switched Data)
 - enhancement of data transmission: unites more 14.4 kbps channels
 - max. 8 theoretically
 - max. 4 practically, (to fit into one 64 kbps channel
 typical speed: 43.2, 57.6 kbps
 - circuit switched, 4 channels simultaneously: EXPENSIVE!

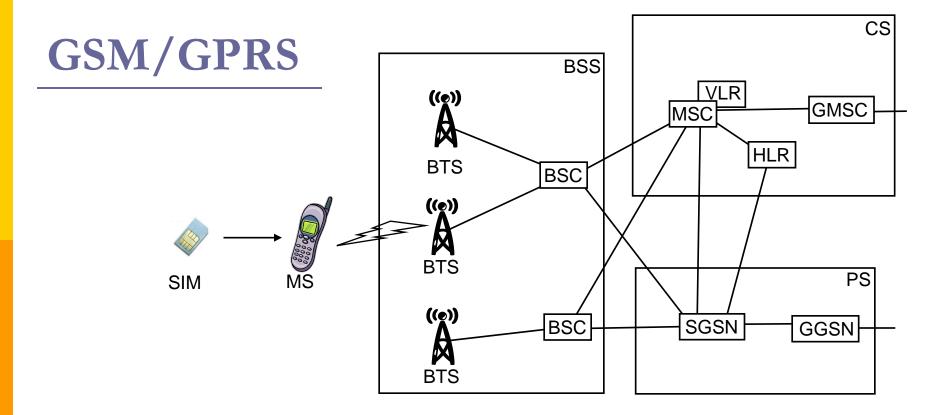
EMS (Enhanced Messaging Service)

- simple pictures
- MMS (Multimedia Messaging Service)
 - multimedia message: picture, text, voice together
 - since 2002
- WAP (Wireless Application Protocol)
 - simplified Web-like service
- Location Based Services
 - relatively imprecise (cell level!),
 - but it can be told e.g., where is a restaurant nearby

GSM/GPRS

- GPRS (General Packet Radio Service)
 - since 2001
 - packet switched data transmission, extension of GSM
 - advantage:
 - better utilisation of network, frequency
 - payment on basis of transmitted data amount (kB), not on basis of duration of the connection
 - speed
 - originally max. 56 kbps
 - theoretically max.: 8 x 20 = 160 kbps
 - typically 60-80 kbps downlink, 20-40 kbps uplink
 - fewer channels used in uplink direction
 - usage:
 - WAP
 - Internet access
 - requires significant extensions in the network (next slide)

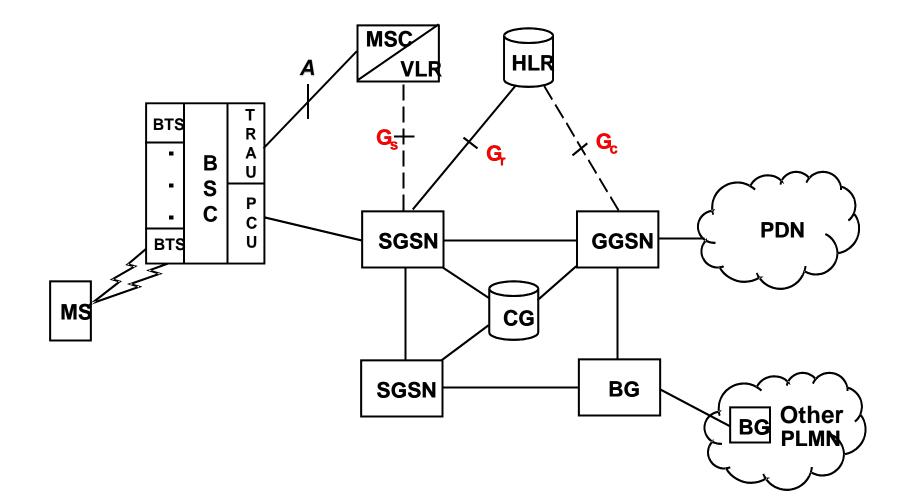
SIM: Subscriber Identity Module,


MS: Mobile Station

BTS: Base Transciever Station

- **BSC: Base Station Controller**
- **BSS: Base Station Subsystem**

CS: Circuit Switched Subsystem


- MSC: Mobile Switching Centre
- VLR: Visitor Location Register
- HLR: Home Location Register
- GMSC: Gateway MSC
- + other units: AuC, EIR, SMSC

PS: Packet Switched Subsystem

- SGSN: Serving GPRS Support Node
- GGSN: Gateway GPRS Support Node (to other data networks e.g. Internet)
- BG: Border Gateway (gateway to other GPRS service providers)

GPRS architecture

GSM/EDGE

- EVOLUTION NO COMMENTATION EVOLUTION NO COMMENTATION NO COMMENT...)
 - since 2003
 - can be used for speeding up the
 - circuit-switched data transmission: Enhanced Circuit Switched Data (ECSD)
 - packet-switched data transmission: Enhanced GPRS (EGPRS)
 - improved modulation technology
 - originally 1 bit/symbol (Gaussian minimum shift keying, GMSK)
 - EDGE: 8PSK, 3 bit/symbol
 - three times larger data transmission speed
 - but worse signal-to-noise ratio
 - can only be used close to the base station, not in the whole cell
 - requires only a limited extensions in the network: EDGE card into the base station + BSC software upgrade