
1

Cloud based networks
Orchestrating the containers
Csaba Simon

BME-VIK



Motivation – multi host
» Docker containers handled with docker
commands

» On-host
» Networking is cumbersome

» docker0 bridge
» How to connect docker containers
deployed on different hosts?

» Mult-hosting
» Third party solutions at the beginning
(e.g. serf - https://www.serf.io/)

» Later: Docker Swarm – multi-hosting in Docker
„It turns a pool of Docker hosts into a single, virtual Docker host”

» Not the same as Docker Swarm Mode (which appeared with v1.12)

2



Motivation - orchestration
» What is missing from a full Docker system?

» Orchestration
» Similar to the services of a cloud system
» Goal: automatized container deployment and management in multi-

host environment (incl. scaling)
» Solution no. 1: Docker in public clouds

» Amazon Web Services, Google Cloud, Microsoft Azure
» Solution no. 2: Docker + OpenStack

» OpenStack Magnum
» Solution no. 3: Docker based orchestration frameworks

» Apache Mesos (2010)
» Google Kubernetes (2014)
» Docker Swarm Mode (2016)

3



Cloud Native Computing Foundation
» Container orchestration based microservices ecosystem
» Note that rkt is the supported container technology

2016. február 1-5. 4



DOCKER SWARM MODE

5



Docker Swarm Mode
» Swarm mode = Docker engine running mode
» The Docker engines organized in the same cluster

» One Docker engine = one node
» Swarm = this cluster above

» Goal: running services in this cluster
» One physical machine may run multiple nodes

» In runtime environment typically Docker engine / phy machine
» Practically hosts running a Docker engine are grouped into a cluster

» Service model: users reach a service
» Service = executes replicated tasks and defines the environment

(network, resources, replication level and policy)
» Tasks run on multiple node handled as a single service

» Task = function (= docker container), which are handled by a 
single service

» Atomic resource unit, runs on a node

6



Swarm Mode architecture
» Docker Swarm Mode nodes controlled by a Manager

» Role: cluster mgmt, offering an API, scheduling
» More Managers provide a distributed redundant operation (high availability)

» Worker node = runs the tasks (Manager can be a worker, too)
» Worker node can be promoted to Manager (and vice-versa)
» Worker nodes join a mesh network

7



Swarm mode networking
» Assign ports to services

» Handling requests arriving to the Swarm (ingress nw)
» The nodes must be the members of a Swarm mode routing mesh

» Each node must run a load balancer module
» Part of the Swarm mode routing mesh
» Forwards the requests to a proper active container
» Even if that container runs on a different host
» Even if that on the node/host that recieved the request does not run such a 

container

8



KUBERNETES

9



Kubernetes – main components

10



Kubernetes deployment

11



Worker node = minion



Kubernetes network
» At Pod level every container is in the same namespace

» Pro: can reach each other via localhost
» Consequence: mind the port assigment within a Pod (2 containers

cannot use the same port)
» Hosts must communicate with containers without NATs

» Typical solutions: 
» Flannel: own solution, flat overlay
» OVS: Open VSwitch – generic solution, widely used in the industry
» Lots of alternatives: 
https://kubernetes.io/docs/concepts/cluster-administration/networking/#how-to-achieve-this

13



workers/minions

Logical structure of a Kubernetes cluster
» Control by the master
» Service offers access to users

» Handled by a load balancer (the Replication Controller)
» The request is answered by one Pod

14

workers/minions

Process of 
serving

a request:

Request coming in

Load balncing

Fwd it
to a Pod

Logical
structure
of a cluster



Demo
» Kubernetes on-line demo

» Starting a Pod, handling in cli

https://kubernetes.io/docs/tutorials/kubernetes-basics/

15


