
1

Cloud based networks
Containers

Simon Csaba

BME-TMIT

CONTAINERS

2

Virtualization and performance?

» Motivation:
» Virtualization = smthg(runs_smthg)

» Some kernel tasks are executed two times

» Increase the performance: decrease the overhead of
„smthg”

3

Container metaphore: logistics

» Logistic (management) problem
» Many transport platforms, many product types

» How many package variants are required?

4

Container metaphore: intermodal container

5

» Logistic (management) problem
» Many transport platforms, many product types

» How many package variants are required?

» Use only one: the container, as a transportation standard

„Transporting” the code in virtualized
systems

6

» Trasnportation platform => execution environment

» Product type => computation task

Application containers

7

Linux containers solve everything (hm..)

8

Paranthesis: case study
(Why should we replace clouds with Docker?)

9

Why Docker?

My World Needed To Change
» 5+ individual teams building “micro services” in Java and Scala
» Frictionless deployment of “micro-services” using Chef & AWS
» 25+ separate “micro-services” deployed in the previous 18 months
» Each service is typically deployed to a single AWS virtual machine
» Each service is deployed 6x - dev, test, staging (2x) and production

(2x)
» 25+ “micro-services” became nearly 150 AWS virtual machines

10

Why Docker? COST!

The AWS bill is too damn high!
» Decline in the global price of oil causing churn in our business
» 6 AWS virtual machines per service isn’t sustainable with our budget
» AWS monthly bill started to gain visibility from sr. management and

the board

11

Why Docker? WASTE!

We weren’t using the compute and memory resources purchased from
AMZN!

» Nearly all “micro-services” were at 1% CPU utilization
» Nearly all “micro-services’ were only using 40% of memory (JVM)
» 150+ virtual machines essentially sitting idle

12

Why Docker? LOCK IN!

How would we leave AMZN if we wanted to?
» Could we use Drillinginfo IT’s Openstack platform?
» What about alternate IaaS providers like Rackspace or Azure?
» What about Container as a Service (CaaS) providers like Joyent,

Tutum or Profitbricks?
» What about using Amazon’s Container Service?

13

My World Needs To Change - Problem Statement

“How can we deploy fewer virtual machines while
increasing the density and utilization of
services per machine without locking us into a
specific IaaS provider?”

14

Why Docker Is Important - Before Containers

Very inefficient use of memory and CPU resources

15

Why Docker Is Important - After Containers

Isolated

services in

fewer

VMs...

… and use

VMs more

efficiently.

16

Why Is Docker Important?

Docker container technology provides our “micro-services” platform:
» Increased density of isolated “micro-services” per virtual machine

(9:1!)
» Containerized “micro-services” are portable across machines and

providers
» Containerized “micro-services” are much faster than virtual machines

17

End of case study

18

Introduction: Linux containers

 Container = Operation System Level
virtualization method for Linux

Kernel

P1

Guest1

P2

Container
Management

Tools

Namespace
Set 1

P1

Guest2

P2

Namespace
Set 2

API/ABI

19

Introduction: motivation

 Why do we need it?
 Better performance

 multi-tenant environment

Kvm

Host-OS

Emulator-Lay

Guest-OS

App

Container

Host-OS

App

LINUX NAMESPACES

21

Namespaces

 Isolating system resources

 6 namespaces in Linux Kernel
 Mount

 UTS

 IPC

 Net

 Pid

 User

22

P3 P2 P1

Mount
Namespace2

Mount
Namespace1

Mount Namespace

 Own file system

/proc/<p1>/mounts

/ /dev/sda1

/home /dev/sda2

/proc/<p3>/mounts

/ /dev/sda3

/boot /dev/sda4

23

/proc/<p2>/mounts

/

/dev/sda1

/home /dev/sda2

UTS Namespace

 UTS = UNIX Timesharing System

 Own uts-info

UTS namespace1

ostype: Linux
osrelease: 3.8.6
version: …

hostname: uts1
domainname: uts1

UTS namespace2

ostype: Linux
osrelease: 3.8.6
version: …

hostname: uts2
domainname: uts2

Same

Modified

24

P3 P2 P1 P4

IPC
namespace2

IPC
namespace1

IPC Namespace

 IPC: InterProcess Communication
 shared memory

 Semaphore

 message queue

25

Net Namespace 1/2

 Net namespace: networking resources

Net Namespace1

Net devices: eth0
IP address: 1.1.1.1/24
Route
Firewall rule
Sockets
Proc
sysfs
…

Net Namespace2

Net devices: eth1
IP address: 2.2.2.2/24
Route
Firewall rule
Sockets
Proc
sysfs
…

26

Net Namespace 2/2

» Separated by the
Kernel

» In order to connect
two namespaces
» routing

27

PID Namespace

 PID: Process ID

 Hierarchical system

PID namespace1 (Parent)
 (Level 0)

PID Namespace2 (Child)
(Level 1)

PID Namespace3 (Child)
(Level 1)

P2

pid:1

pid:2

P3

P4

ls /proc
1 2 3 4
ls /proc
1 2 3 4

ls /proc
1

ls /proc
1

ls /proc
1

ls /proc
1

pid:4

P1

pid:1

pid:3

pid:1

28

User Namespace

 User attributes linked to secure access
 kuid/kgid: Original uid/gid, Global

 uid/gid: user id from „user” namespace mapped to kuid/kgid

 Only the parent user NS can setup the mapping

User namespace1

uid:
10-14

uid_map
10 2000 5

kuid:
2000-2004

User namespace2

uid:
0-9

uid_map
0 1000 10

kuid:
1000-1009

29

User Namespace

 Create, stat file

User
namespace

root
#touch

/file

Disk /file (kuid:1000)

uid_map:
0 1000 10

root
#stat
/file

 File : “/file”

Access: uid

(0/root)

30

CGROUPS

31

Linux cgroups

» Limiting the resource usage
» Storage (mem)

» Compute (cpu)

» Communication (blkio)

» Devices (dev)

32

LXC

33

System API/ABI

 Proc
 /proc/<pid>/ns/

 System Call
 clone

 unshare

 setns

34

Proc

 /proc/<pid>/ns/ipc: ipc namespace

 /proc/<pid>/ns/mnt: mount namespace

 /proc/<pid>/ns/net: net namespace

 /proc/<pid>/ns/pid: pid namespace

 /proc/<pid>/ns/uts: uts namespace

 /proc/<pid>/ns/user: user namespace

 If the proc file of two processes are the same,
then they belong to the same namespace

35

System calls

 clone
int clone(int (*fn)(void *), void *child_stack,

 int flags, void *arg, …);

6 flag:

 CLONE_NEWIPC,CLONE_NEWNET,

 CLONE_NEWNS,CLONE_NEWPID,

 CLONE_NEWUTS,CLONE_NEWUSER

36

System calls

 clone

 new process (process2) and IPC in namespace2

Mount1

P1 P2
IPC2

(new created)

Others1

37

IPC1
clone(,, CLONE_NEWIPC,)

Mount1

Others1

 unshare
int unshare(int flags);

New namespace from „user space”, stepping into a new NS

38

System calls

 unshare

Creating net namespace2

39

Mount1

P1 P1
Net2

(new created)

Others1

Net1
unshare(CLONE_NEWNET)

Mount1

Others1

System calls

 setns
int setns(int fd, int nstype);

Defines the NS the new process will belong to

@fd: file descriptor of namespace(/proc/<pid>/ns/*)

@nstype: type of namespace.

40

System calls

 setns

 Chaging PID namespace of P2

PID1 P1

P2

PID2

setns(open(/proc/p1/ns/pid,) , 0)

P2

41

PID1 P1

PID2

System calls

Libvirt LXC

 Libvirt LXC: userspace container management tool

 Implemented as libvirt driver

 Container management

 Creating NS

 Handling private file system within a container

 Creating the devices of a container

 Resources controlled through cgroup

42

Comparison

 Lightweigth virtualization, only one OS
 „host share the same kernel with guest”

43

Container KVM

performance Great Normal

OS support Linux Only No Limit

Security Normal Great

Completeness Low Great

Open issues

 /proc/meminfo, cpuinfo…
 Kernel space (cgroup)

 User space (low efficiency)

New namespace proposals under discussion
 Audit (user namespace?)

 Syslog (is it required?)

44

 Bandwidth
 TC Qdisc

 On host (how to map a container to NICs)

 On container (user can modify it)

 Netfilter
 How to handle ingress bandwidth?

 Disk quota
 Uid/Gid Quota (many users)

 Project Quota (xfs OK)

45

Open issues

DOCKER

46

What is Docker?

47

• Docker = Linux container engine

• Open Source project

• First release (early beta): 3/2013 by
dotCloud

• Later renamed to Docker Inc

• Python code, later refactored in Go

• https://www.docker.io/

• git repository:
https://github.com/dotcloud/docker.git

Docker terminology

» Docker image = one file group corresponding to a
VM, which contains any extension (lib, db, config,
etc.) required to run the planned app

» Container = run-time Docker image instance

» Registry = image repository
» By default is local (on-host)

» Docker Inc. Supports a global public on-line repository
(similar to github)

48

What is Docker?

49

Docker Engine

» start docker service

» It executes every „docker
command”

» Keeps track the locally
stored docker images

50

Docker system overview

51

[Source: https://docs.docker.com/terms/layer/]

Docker images

» Composed of layers

» Union file system
» One single image from layers

» Created based on a template
» Dockerfile

» Starting point: base image (e.g. ubuntu, fedora, etc.)

» Own command to add new layers

» Visulaization of different layers of an image:
» https://imagelayers.io/

52

Docker Machine

» Handling containers in remote hosts

Docker Machine

» Handling containers in remote hosts
» Own cli (docker-machine)

Docker Compose

» Starting multiple services
(containers)

» Dockerfile -> application specific

 details

» docker-compose.yml

» docker-compose up

55

Docker workflow 1/2

» Single dev environment (local machine or
container)

» All services run in containers (eg. DB)
» And run the same way

» Testing in „real” deployment conditions
» Build in seconds

» Run immediately

56

Docker workflow 2/2

» If local build OK, then
» Upload to registry (public/private)

» Automatized run

» In production, enterprise environment, too

» Simple shift between dev and production

» In case of errors: Rollback
» Use an earlier working version

57

a.) Docker images - (run/commit)

» 1) docker run ubuntu bash

» 2) apt-get install this and that

» 3) docker commit <containerid> <imagename>

» 4) docker run <imagename> bash

» 5) git clone git://.../mycode

» 6) pip install -r requirements.txt

» 7) docker commit <containerid> <imagename>

» 8) repeat steps 4-7 as necessary

» 9) docker tag <imagename> <user/image>

» 10) docker push <user/image>

58

a.) Pro/con

» Pro

– Well-known technologies and steps

– roll back/forward – as required

» Con

– Manual process

– Iterative steps „add on”, hard to remember

– Complete re-build prone to errors

59

» RUN apt-get -y update

» RUN apt-get install -y g++

» RUN apt-get install -y erlang-dev erlang-manpages erlang-base-hipe
...

» RUN apt-get install -y libmozjs185-dev libicu-dev libtool ...

» RUN apt-get install -y make wget

» RUN wget http://.../apache-couchdb-1.3.1.tar.gz | tar -C /tmp -zxf-

» RUN cd /tmp/apache-couchdb-* && ./configure && make install

» RUN printf "[httpd]\nport = 8101\nbind_address = 0.0.0.0" >

» /usr/local/etc/couchdb/local.d/docker.ini

EXPOSE 8101

CMD ["/usr/local/bin/couchdb"]

docker build -t author_name/couchdb

60

b.) Docker files

b.) Advantages

» Easy to learn

» Easy re-build
» Caching system

» build process described in a single file

61

Docker – why is fast?

62

Docker

» Multi-arch, multi-OS

» Stable control API

» Stable API plugin

» Resiliency

» Signed

» Organized in clusters, scalable

63

Docker vs. VM
» Latency: Applications with a low tolerance for latency are going to do better on physical. This

something we see quite a bit in financial services (trading applications are prime example).

» Capacity: VMs made their bones by optimizing system load. If your containerized app doesn’t
consume all the capacity on a physical box, virtualization still offers a benefit here.

» Mixed Workloads: Physical servers will run a single instance of an operating system. So, you if you
wish to mix Windows and Linux containers on the same host, you’ll need to use virtualization

» Disaster Recovery: Again, like capacity optimizations, one of the great benefits of VMs are
advanced capabilities around site recovery and high availability. While these capabilities may exist
with physical hosts, the are a wider array of options with virtualization.

» Existing Investments and Automation Frameworks : A lot of the organizations have already
built a comprehensive set of tools around things like infrastructure provisioning. Leveraging this
existing investment and expertise makes a lot of sense when introducing new elements.

» Multitenancy: Some customers have workloads that can’t share kernels. In this case VMs provide
an extra layer of isolation compared to running containers on bare metal.

» Resource Pools / Quotas: Many virtualization solutions have a broad feature set to control how
virtual machines use resources. Docker provides the concept of resource constraints, but for bare
metal you’re kind of on your own.

» Automation/APIs: Very few people in an organization typically have the ability to provision bare
metal from an API. If the goal is automation you’ll want an API, and that will likely rule out bare
metal.

» Licensing Costs: Running directly on bare metal can reduce costs as you won’t need to purchase
hypervisor licenses. And, of course, you may not even need to pay anything for the OS that hosts
your containers.

64

https://docs.docker.com/engine/reference/run/#runtime-constraints-on-resources

Advantages of Docker

» Easy installation

» Every app, many environments

» Repeatable build

» Great hype, strong community, fast bugfixes

» New virtualization processes

» Con

» Docker container type
» Host OS dependent

» „Orchestration”

» Networking

65

Docker cons

» Docker container type
» Host OS dependent

» „Orchestration”

» Networking

» But: continous upgrades, developments
» E.g., Docker on Windows, Docker Swarm Mode

» Favored by the hype and strong community support

66

Security?

» Docker over REST API / HTTP?
» Authentication!

» Docker daemon runs with root priviliges
» Containers are then OK (in user space)

» Can they „reach back”?

» docker-1.3 --cap-add, --cap-drop

» man capabilities

» „overview of Linux capabilities”

» „Starting with kernel 2.2”

» „per-thread attribute”

» More developments in the make
» Docker daemon

67

Sources

» Docker story in a nutshell:
http://www.infoworld.com/article/3025870/paas/the-sun-
sets-on-original-docker-paas.html

» Docker overview:
http://www.linuxjournal.com/content/docker-lightweight-
linux-containers-consistent-development-and-deployment

» „The Docker Book”
http://www.dockerbook.com/#toc

» Docker Meetup @Budapest
http://www.ustream.tv/recorded/60277876

68

Docker state machine

» die, kill ≠ destroy

69

