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Motivation — multi host

» Docker containers handled with docker

commands
» On-host
» Networking is cumbersome

» docker0Q bridge
» How to connect docker containers @ @ @

deployed on different hosts?
» Mult-hosting
» Third party solutions at the beginning
(e.g. serf - https://www.serf.io/)
» Later: Docker Swarm — multi-hosting in Docker
»1t turns a pool of Docker hosts into a single, virtual Docker host”
» Not the same as Docker Swarm Mode (which appeared with v1.12)




Motivation - orchestration

» What is missing from a full Docker system?
» Orchestration
» Similar to the services of a cloud system
» Goal: automatized container deployment and management in multi-
host environment (incl. scaling)
» Solution no. 1: Docker in public clouds
» Amazon Web Services, Google Cloud, Microsoft Azure

» Solution no. 2: Docker + OpenStack
» OpenStack Magnum

» Solution no. 3: Docker based orchestration frameworks
» Apache Mesos (2010)
» Google Kubernetes (2014)
» Docker Swarm Mode (2016)




DOCKER SWARM MODE




Docker Swarm Mode

» Swarm mode = Docker engine running mode
» The Docker engines organized in the same cluster
» One Docker engine = one node

» Swarm = this cluster above
» Goal: running services in this cluster

» One physical machine may run multiple nodes

» In runtime environment typically Docker engine / phy machine
» Practically hosts running a Docker engine are grouped into a cluster

» Service model: users reach a service
» Service = executes replicated tasks and defines the environment
(network, resources, replication level and policy)
» Tasks run on multiple node handled as a single service
» Task = function (= docker container), which are handled by a
single service
» Atomic resource unit, runs on a node




Swarm Mode architecture

» Docker Swarm Mode nodes controlled by a Manager

» Role: cluster mgmt, offering an API, scheduling

» More Managers provide a distributed redundant operation (high availability)
» Worker node = runs the tasks (Manager can be a worker, to0)

» Worker node can be promoted to Manager (and vice-versa)
» Worker nodes join a mesh network
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Swarm mode networking

» Assign ports to services
» Handling requests arriving to the Swarm (ingress nw)
» The nodes must be the members of a Swarm mode routing mesh
» Each node must run a load balancer module
Part of the Swarm mode routing mesh
Forwards the requests to a proper active container
Even if that container runs on a different host
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KUBERNETES




Kubernetes — main components

Pod - A group of Containers

Labels - Labels for identifying pods

Kubelet - Container Agent

Proxy - A load balancer for Pods

etcd - A metadata service

cAdvisor - Container Advisor provides resource
usage/performance statistics

Replication Controller - Manages replication
of pods

Scheduler - Schedules pods in worker nodes
API Server - Kubernetes API server




Kubernetes deployment
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Logical structure of a Kubernetes cluster
Control by the master

Service offers access to users
» Handled by a load balancer (the Replication Controller)
» The request is answered by one Pod

Kubernetes Master

Logical
| _@_ structure
| of a cluster

API Server Replication
Controller

I

workers/minions -

= v
- 1

W Pod ¥ Pod
[ kubelet ] [ kube-proxy ] [ docker ]

Node

- .I.\.
%
5\

“workers/minions

Kubernetes Cluster k
1

-

N

\_—’
’ ‘ Fwd it
to a Pod

%

M
u Process\\
serving

Q_oad balncing

[ Replication |
Lhn roller |

@) Pod

arequest:

.

= Labels

12



Kubernetes network

» At Pod level every container is in the same namespace
» Pro: can reach each other via localhost
» Consequence: mind the port assigment within a Pod (2 containers
cannot use the same port)

» Hosts must communicate with containers without NATSs

» Typical solutions:
» Flannel: own solution, flat overlay
» OVS: Open VSwitch — generic solution, widely used in the industry

» Lots of alternatives:
https://kubernetes.io/docs/concepts/cluster-administration/networking/#how-to-achieve-this
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Kubernetes Flannel
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OVS bridging
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Demo

» Kubernetes on-line demo
» Starting a Pod, handling in cli

https://kubernetes.io/docs/tutorials/kubernetes-basics/
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