Cloud based networks
Orchestrating the containers

Csaba Simon

BME-VIK

Motivation — multi host

» Docker containers handled with docker

commands
» On-host
» Networking is cumbersome

» docker0Q bridge
» How to connect docker containers @ @ @

deployed on different hosts?
» Mult-hosting
» Third party solutions at the beginning
(e.g. serf - https://www.serf.io/)
» Later: Docker Swarm — multi-hosting in Docker
»1t turns a pool of Docker hosts into a single, virtual Docker host”
» Not the same as Docker Swarm Mode (which appeared with v1.12)

Motivation - orchestration

» What is missing from a full Docker system?
» Orchestration
» Similar to the services of a cloud system
» Goal: automatized container deployment and management in multi-
host environment (incl. scaling)
» Solution no. 1: Docker in public clouds
» Amazon Web Services, Google Cloud, Microsoft Azure

» Solution no. 2: Docker + OpenStack
» OpenStack Magnum

» Solution no. 3: Docker based orchestration frameworks
» Apache Mesos (2010)
» Google Kubernetes (2014)
» Docker Swarm Mode (2016)

DOCKER SWARM MODE

Docker Swarm Mode

» Swarm mode = Docker engine running mode
» The Docker engines organized in the same cluster
» One Docker engine = one node

» Swarm = this cluster above
» Goal: running services in this cluster

» One physical machine may run multiple nodes

» In runtime environment typically Docker engine / phy machine
» Practically hosts running a Docker engine are grouped into a cluster

» Service model: users reach a service
» Service = executes replicated tasks and defines the environment
(network, resources, replication level and policy)
» Tasks run on multiple node handled as a single service
» Task = function (= docker container), which are handled by a
single service
» Atomic resource unit, runs on a node

Swarm Mode architecture

» Docker Swarm Mode nodes controlled by a Manager

» Role: cluster mgmt, offering an API, scheduling

» More Managers provide a distributed redundant operation (high availability)
» Worker node = runs the tasks (Manager can be a worker, to0)

» Worker node can be promoted to Manager (and vice-versa)
» Worker nodes join a mesh network

Raft consensus group

Internal distributed state store (i}
I l I

Manager

Manager

// / :
P &
/ \ a,\\
Worker ! Worker$ Workeré Worker$ Worker Worker$| Worker !

Gossip network

Manager

Swarm mode networking

» Assign ports to services
» Handling requests arriving to the Swarm (ingress nw)
» The nodes must be the members of a Swarm mode routing mesh
» Each node must run a load balancer module
Part of the Swarm mode routing mesh
Forwards the requests to a proper active container
Even if that container runs on a different host

»

»

»

»

Even if that on the node/host that recieved the request does not run such a

container

192.168.99.100:8080
my-web published port

192.168.99.101:8080
my-web published port

192.168.99.102:8080
my-web published port

swarm
load
balancer

e,
.......

"'

ar
an
e

s
ws

.....
s
..........
.............

.

10.0.0.1:80
my-web. 1 node1

192.16899.100

swarm
load
balancer

.......

ay .
.........

"""""""

10.0.0.2:80

my-web.2 node2

192.168.99.101

swarm

load
balancer

L
. e

s

node3
192.168.99.102

ingress network

KUBERNETES

Kubernetes — main components

Pod - A group of Containers

Labels - Labels for identifying pods

Kubelet - Container Agent

Proxy - A load balancer for Pods

etcd - A metadata service

cAdvisor - Container Advisor provides resource
usage/performance statistics

Replication Controller - Manages replication
of pods

Scheduler - Schedules pods in worker nodes
API Server - Kubernetes API server

Kubernetes deployment

Overlay Network: 10.1.0.0/16

etcd
(Flannel, Open vSwitch, etc)
Docker 4(_________ 0,,,
z I
Wit Service Network: : I
I
17217.8.0/24 | .
i |
| :
! :
Kubernetes Kubernetes Kubernetes Kubernetes
Master Minion 1 Minion 2 Mihion n
|
, :
Replication
AP Corirollors Kubelet Proxy Docker A Docker B
Scheduler cAdvisor Pods

10

Worker node = minion

Kubelet

cAdvisor

5

1

Kubernetes]

Services
Proxy
Pod 1 Pod 2 Pod n

r@ N

= — r — =
Containers] IContainers] Containers]

\

|

Kubernetes Minion

Logical structure of a Kubernetes cluster
Control by the master

Service offers access to users
» Handled by a load balancer (the Replication Controller)
» The request is answered by one Pod

Kubernetes Master

Logical
| _@_ structure
| of a cluster

API Server Replication
Controller

I

workers/minions -

= v
- 1

W Pod ¥ Pod
[kubelet] [kube-proxy] [docker]

Node

- .I.\.
%
5\

“workers/minions

Kubernetes Cluster k
1

-

N

_—’
’ ‘ Fwd it
to a Pod

%

M
u Process\\
serving

Q_oad balncing

[Replication |
Lhn roller |

@) Pod

arequest:

.

= Labels

12

Kubernetes network

» At Pod level every container is in the same namespace
» Pro: can reach each other via localhost
» Consequence: mind the port assigment within a Pod (2 containers
cannot use the same port)

» Hosts must communicate with containers without NATSs

» Typical solutions:
» Flannel: own solution, flat overlay
» OVS: Open VSwitch — generic solution, widely used in the industry

» Lots of alternatives:
https://kubernetes.io/docs/concepts/cluster-administration/networking/#how-to-achieve-this

13

Kubernetes Flannel

Ped
Web App Frontend

cachel container

CoreQS Machine

walhl

10.1.15.2/24 ® |

o
2 =] =
= = o O o
5) @ L) = 2
L4 e—e i e—e flanneld o—e £ o
g 3 - S
Pod = = E
Web App Frontend2
— _ B
walh
cache2 container ** 10.1.15.3/24 *
Core0S Machine
Pod
Backend Servicel
o wathl
ackendl container - 10.1.20.2,"24 '—l
B
s w9 3
o = ﬁ
= o 2 Q o=
i 9 e—e- 3 e—e flanneld —t =
R =R N
Pod = = E

Backend Seruiee

backend2 container

backup container

walkl

10.1.20.3/24 %

» flannelID within a host

»

T .

Tunneling over UDP

MAC

Quter
IP

uop

Inner

packet

Payload

source: 192.168.0,100
dest: 192, 168.0,200

source; 10,1152
dest: 10.1.20.3

14

OVS bridging

]

1 pody 10.2442.4
podx 10.244.1.3]

ﬂ?@
&
OpenVSwitch GRE/VxLAN tunnel mesh &\ &
& _
e Linux bridge ‘kbr0’ replaces the default ‘docker(’ &‘:}"‘ _veth pair
bridge N B
e Pod traffic flows through the tunnels via OVS
e Examples of Network X could be LAN, internet, podz 10.244.3.3
ECZ2 vpc, SDN
e The tunnel mesh could be static, flow based or a \
combination (

15

Demo

» Kubernetes on-line demo
» Starting a Pod, handling in cli

https://kubernetes.io/docs/tutorials/kubernetes-basics/

16

