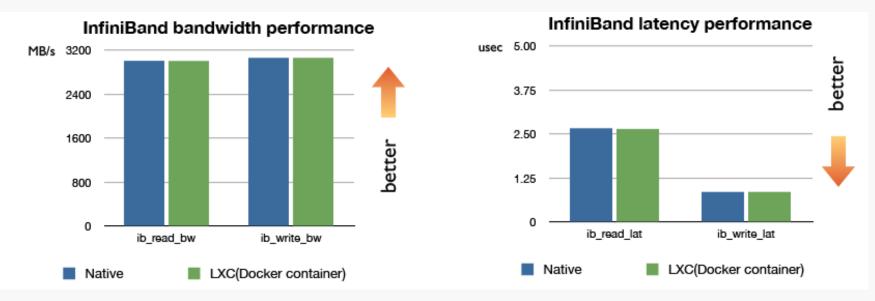
Cloud based networks Containers

Simon Csaba



CONTAINERS

Virtualization and performance?

» Motivation:

- » Virtualization = smthg(runs_smthg)
 - » Some kernel tasks are executed two times
- » Increase the performance: decrease the overhead of "smthg"

Container metaphore: logistics

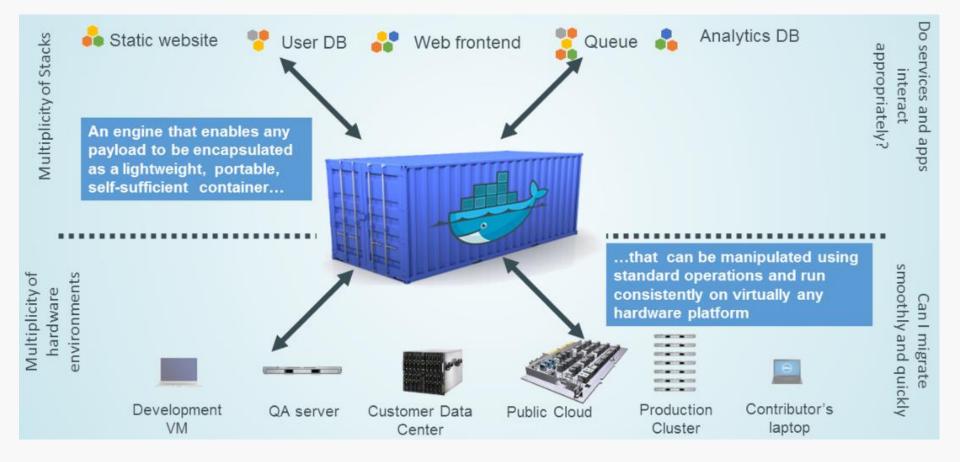
» Logistic (management) problem

- » Many transport platforms, many product types
- » How many package variants are required?

and the second s	?	?	?	?	?	?
-	?	?	?	?	?	?
	?	?	?	?	?	?
0	?	?	?	?	?	?
III JIII	?	?	?	?	?	?
	?	?	?	?	?	?
				(CPUs)	1	

Container metaphore: intermodal container

- » Logistic (management) problem
 - » Many transport platforms, many product types
 - » How many package variants are required?
 - » Use only one: the container, as a transportation standard



", Transporting" the code in virtualized systems

- » Trasnportation platform => execution environment
- » Product type => computation task

Application containers

Linux containers solve everything (hm..)

Paranthesis: case study (Why should we replace clouds with Docker?)

Running Your Services On Docker

Robert Bastian: An experience report

Webinar Series 2015

Why Docker?

My World Needed To Change

- » 5+ individual teams building "micro services" in Java and Scala
- » Frictionless deployment of "micro-services" using Chef & AWS
- » 25+ separate "micro-services" deployed in the previous 18 months
- » Each service is typically deployed to a single AWS virtual machine
- » Each service is deployed 6x dev, test, staging (2x) and production (2x)
- » 25+ "micro-services" became nearly 150 AWS virtual machines

Why Docker? COST!

The AWS bill is too damn high!

- » Decline in the global price of oil causing churn in our business
- » 6 AWS virtual machines per service isn't sustainable with our budget
- » AWS monthly bill started to gain visibility from sr. management and the board

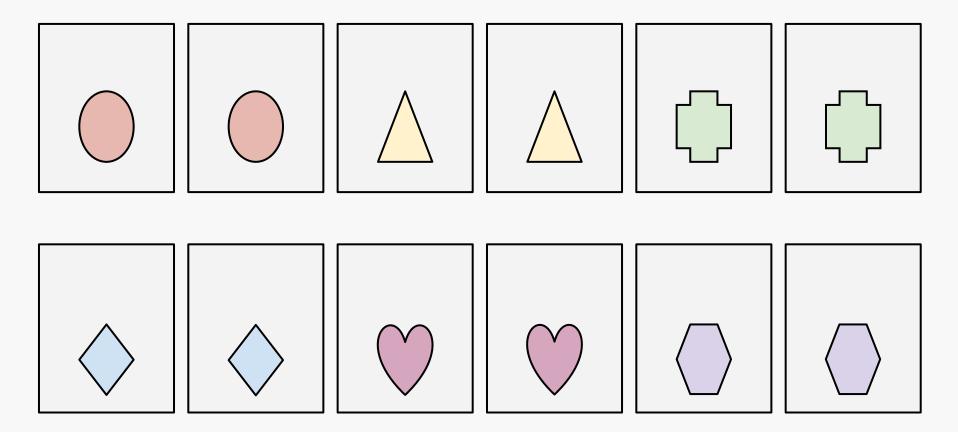
Why Docker? WASTE!

We weren't using the compute and memory resources purchased from AMZN!

- » Nearly all "micro-services" were at 1% CPU utilization
- » Nearly all "micro-services' were only using 40% of memory (JVM)
- » 150+ virtual machines essentially sitting idle

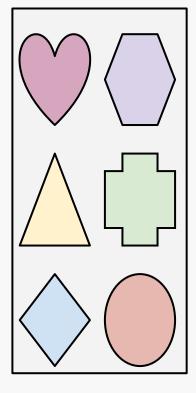
Why Docker? LOCK IN!

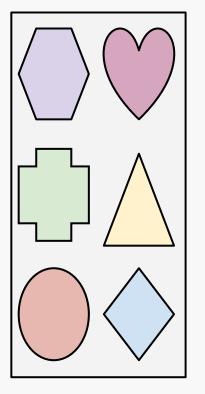
How would we leave AMZN if we wanted to?


- » Could we use Drillinginfo IT's Openstack platform?
- » What about alternate IaaS providers like Rackspace or Azure?
- » What about Container as a Service (CaaS) providers like Joyent, Tutum or Profitbricks?
- » What about using Amazon's Container Service?

My World Needs To Change - Problem Statement

"How can we *deploy fewer* virtual machines while *increasing the density and utilization* of services per machine *without locking* us into a specific IaaS provider?"


Why Docker Is Important - Before Containers


Very inefficient use of memory and CPU resources

Why Docker Is Important - After Containers

Isolated services in fewer VMs...

... and use VMs more efficiently.

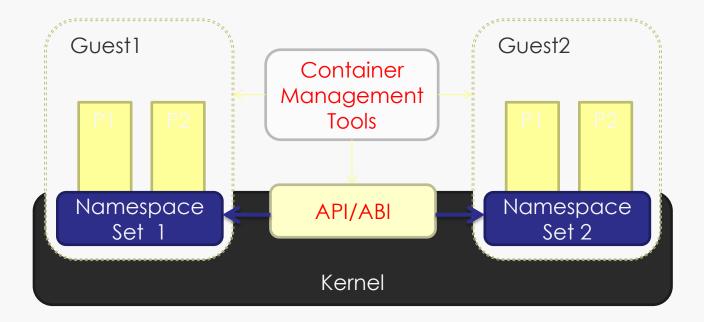
Why Is Docker Important?

Docker container technology provides our "micro-services" platform:

- » Increased *density* of *isolated* "micro-services" per virtual machine (9:1!)
- » Containerized "micro-services" are *portable* across machines and providers
- » Containerized "micro-services" are much *faster* than virtual machines

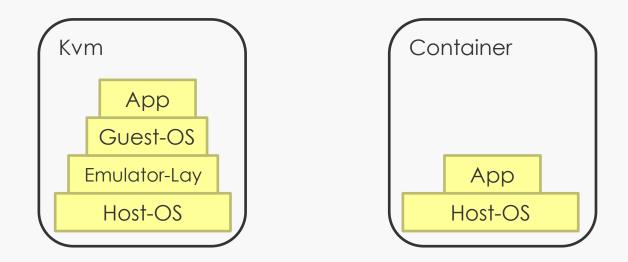
End of case study

Running Your Services On Docker


Robert Bastian: An experience report

Webinar Series 2015

Introduction: Linux containers


Container = Operation System Level virtualization method for Linux

Introduction: motivation

Why do we need it?

Better performance

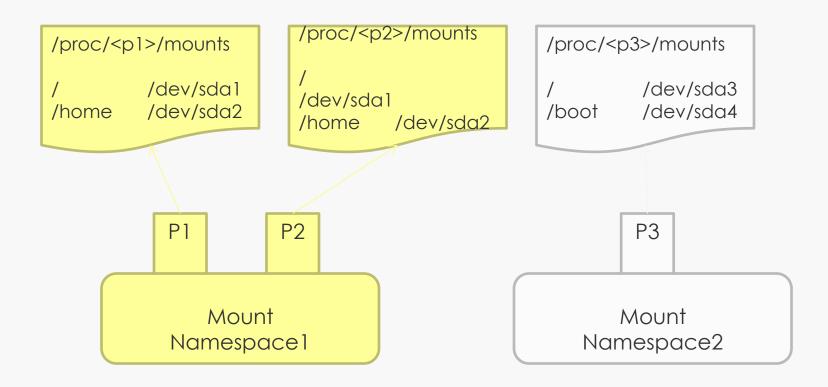
multi-tenant environment

LINUX NAMESPACES

Namespaces

Isolating system resources

6 namespaces in Linux Kernel


- Mount
- UTS
- IPC
- Net

Pid

User

Mount Namespace

Own file system

UTS Namespace

UTS = UNIX Timesharing SystemOwn uts-info

Same

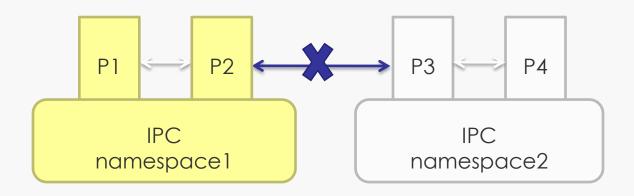
Modified

ostype: Linux osrelease: 3.8.6 version: ...

hostname: uts1 domainname: uts1

UTS namespace1

ostype: Linux osrelease: 3.8.6 version: ...


hostname: uts2 domainname: uts2

UTS namespace2

IPC Namespace

IPC: InterProcess Communication

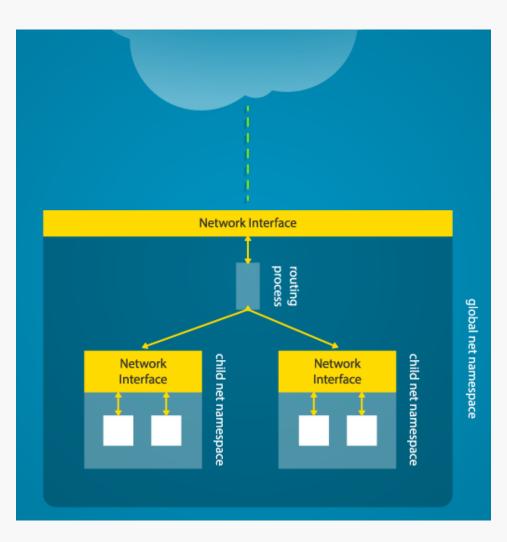
- shared memory
- Semaphore
- message queue

Net Namespace 1/2

Net namespace: networking resources

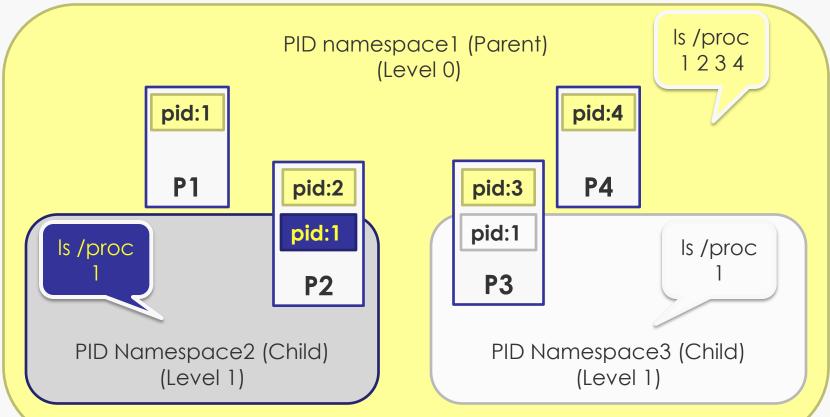
Net devices: eth0 IP address: 1.1.1.1/24 Route Firewall rule Sockets Proc sysfs

•••


Net Namespace1

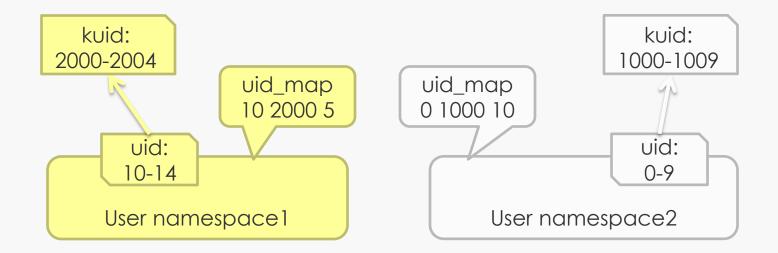
Net devices: eth1 IP address: 2.2.2.2/24 Route Firewall rule Sockets Proc sysfs

Net Namespace2

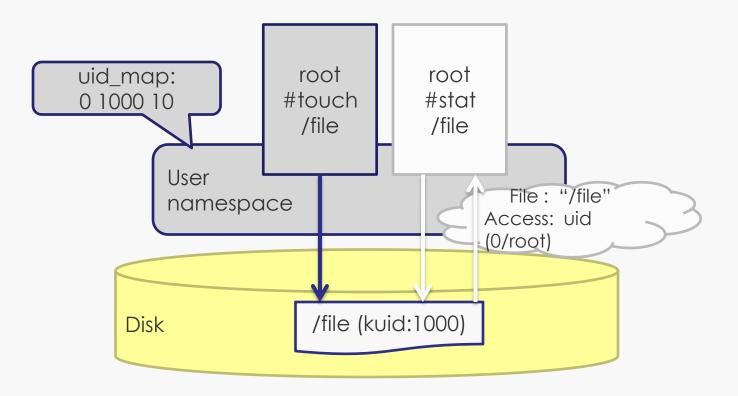

Net Namespace 2/2

- » Separated by the Kernel
- » In order to connect two namespaces
 - » routing

PID Namespace


- PID: Process ID
- Hierarchical system

User Namespace


User attributes linked to secure access

- kuid/kgid: Original uid/gid, Global
- uid/gid: user id from "user" namespace mapped to kuid/kgid
- Only the parent user NS can setup the mapping

User Namespace

Create, stat file

CGROUPS

Linux cgroups

» Limiting the resource usage

- » Storage (mem)
- » Compute (cpu)
- » Communication (blkio)
- » Devices (dev)

LXC

System API/ABI

Proc

/proc/<pid>/ns/

System Call

clone

unshare

setns

Proc

- /proc/<pid>/ns/ipc: ipc namespace
- /proc/<pid>/ns/mnt: mount namespace
- /proc/<pid>/ns/net: net namespace
- /proc/<pid>/ns/pid: pid namespace
- /proc/<pid>/ns/uts: uts namespace
- /proc/<pid>/ns/user: user namespace
- If the proc file of two processes are the same, then they belong to the same namespace

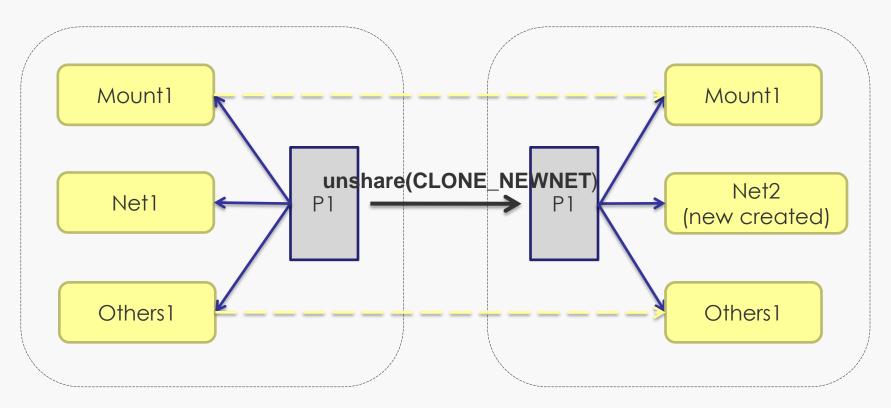
System calls


clone

6 flag:

CLONE_NEWIPC,CLONE_NEWNET, CLONE_NEWNS,CLONE_NEWPID, CLONE_NEWUTS,CLONE_NEWUSER

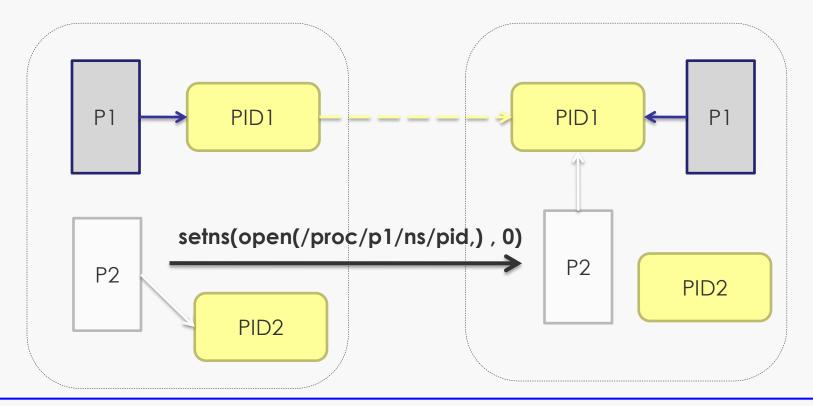
clone


new process (process2) and IPC in namespace2

unshare int unshare(int flags);

New namespace from "user space", stepping into a new NS

unshareCreating net namespace2


setns int setns(int fd, int nstype);

Defines the NS the new process will belong to

@fd: file descriptor of namespace(/proc/<pid>/ns/*)
@nstype: type of namespace.

setns

Chaging PID namespace of P2

Libvirt LXC

Libvirt LXC: userspace container management tool

- Implemented as libvirt driver
- Container management
- Creating NS
- Handling private file system within a container
- Creating the devices of a container
- Resources controlled through cgroup

Comparison

Lightweigth virtualization, only one OS

"host share the same kernel with guest"

	Container	KVM
performance	Great	Normal
OS support	Linux Only	No Limit
Security	Normal	Great
Completeness	Low	Great

Open issues

/proc/meminfo, cpuinfo...

- Kernel space (cgroup)
- User space (low efficiency)

New namespace proposals under discussion

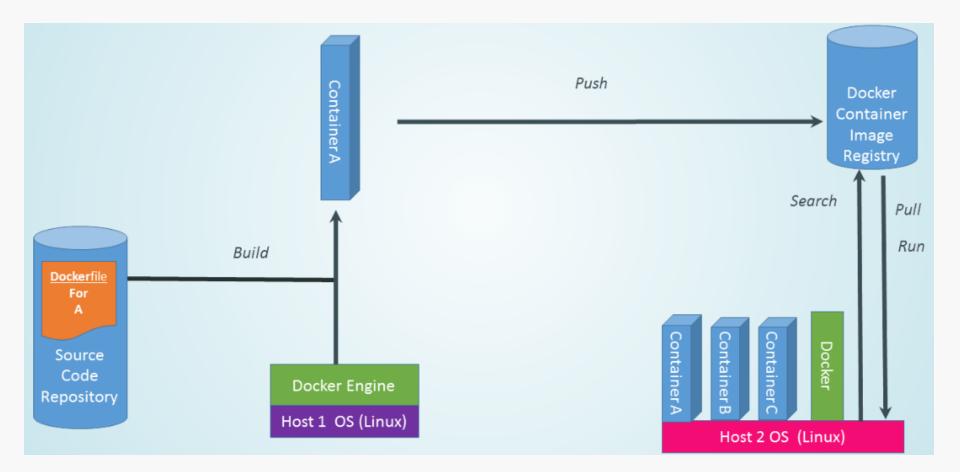
- Audit (user namespace?)
- Syslog (is it required?)

Open issues

Bandwidth

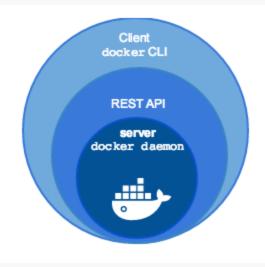
- TC Qdisc
 - On host (how to map a container to NICs)
 - On container (user can modify it)
- Netfilter
 - How to handle ingress bandwidth?
- Disk quota
 - Uid/Gid Quota (many users)
 - Project Quota (xfs OK)

DOCKER


What is Docker?

- Docker = Linux container engine
- Open Source project
 - First release (early beta): 3/2013 by dotCloud
 - Later renamed to Docker Inc
- Python code, later refactored in Go
- https://www.docker.io/
- git repository: https://github.com/dotcloud/docker.git

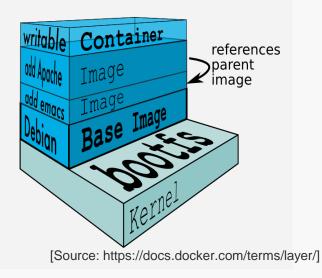
Docker terminology

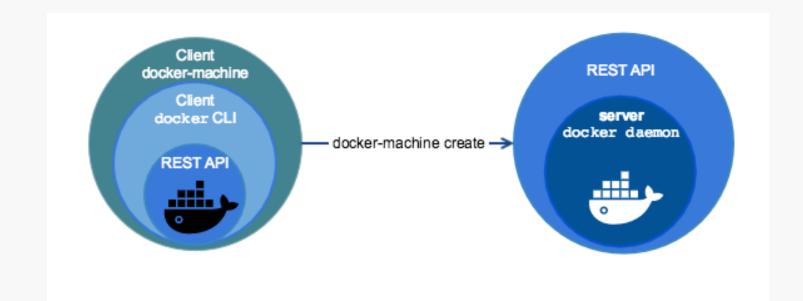

- » Docker image = one file group corresponding to a VM, which contains any extension (lib, db, config, etc.) required to run the planned app
- » Container = run-time Docker image instance
- » Registry = image repository
 - » By default is local (on-host)
 - » Docker Inc. Supports a global public on-line repository (similar to github)

What is Docker?

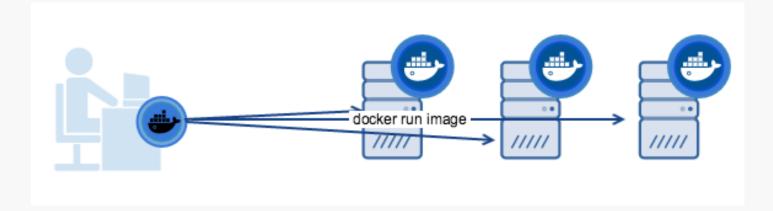
Docker Engine

- » start docker service
- » It executes every "docker command"
- » Keeps track the locally stored docker images


Docker system overview


Docker images

- » Composed of layers
- » Union file system
 - » One single image from layers
- » Created based on a template
 - » Dockerfile
 - » Starting point: base image (e.g. ubuntu, fedora, etc.)
 - » Own command to add new layers
- » Visulaization of different layers of an image:
 - » https://imagelayers.io/



Docker Machine

» Handling containers in remote hosts

Docker Machine

» Handling containers in remote hosts

» Own cli (docker-machine)

Docker Compose

- » Starting multiple services (containers)
- » Dockerfile -> application specific details
- » docker-compose.yml
- » docker-compose up

version: '2' services: web: build: ports: - "5000:5000" volumes: - .:/code logvolume01:/var/log links: - redis redis: image: redis volumes: logvolume01: {}

Docker workflow 1/2

- » Single dev environment (local machine or container)
- » All services run in containers (eg. DB)

» And run the same way

- » Testing in "real" deployment conditions
 - » Build in seconds
 - » Run immediately

Docker workflow 2/2

- » If local build OK, then
 - » Upload to registry (public/private)
 - » Automatized run
 - » In production, enterprise environment, too
 - » Simple shift between dev and production
- » In case of errors: Rollback
 - » Use an earlier working version

a.) Docker images - (run/commit)

- » 1) docker run ubuntu bash
- » 2) apt-get install this and that
- » 3) docker commit <containerid> <imagename>
- » 4) docker run <imagename> bash
- » 5) git clone git://.../mycode
- » 6) pip install -r requirements.txt
- » 7) docker commit < containerid > < imagename >
- » 8) repeat steps 4-7 as necessary
- » 9) docker tag <imagename> <user/image>
- » 10) docker push <user/image>

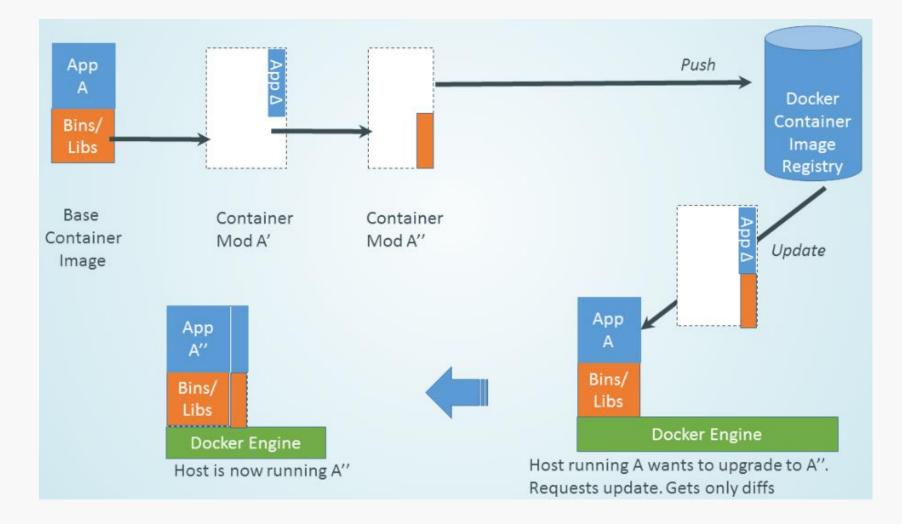
a.) Pro/con

- » Pro
- Well-known technologies and steps
- roll back/forward as required
- » Con
- Manual process
- Iterative steps "add on", hard to remember
- Complete re-build prone to errors

b.) Docker files

- » RUN apt-get -y update
- » RUN apt-get install -y g++
- » RUN apt-get install -y erlang-dev erlang-manpages erlang-base-hipe
- » RUN apt-get install -y libmozjs185-dev libicu-dev libtool ...
- » RUN apt-get install -y make wget
- » RUN wget http://.../apache-couchdb-1.3.1.tar.gz | tar -C /tmp -zxf-
- » RUN cd /tmp/apache-couchdb-* && ./configure && make install
- » RUN printf "[httpd]\nport = 8101\nbind_address = 0.0.0.0" >
- » /usr/local/etc/couchdb/local.d/docker.ini

EXPOSE 8101


CMD ["/usr/local/bin/couchdb"]

docker build -t author_name/couchdb

b.) Advantages

- » Easy to learn
- » Easy re-build
 - » Caching system
- » build process described in a single file

Docker – why is fast?

Docker

- » Multi-arch, multi-OS
- » Stable control API
- » Stable API plugin
- » Resiliency
- » Signed
- » Organized in clusters, scalable

Docker vs. VM

- » **Latency**: Applications with a low tolerance for latency are going to do better on physical. This something we see quite a bit in financial services (trading applications are prime example).
- » **Capacity**: VMs made their bones by optimizing system load. If your containerized app doesn't consume all the capacity on a physical box, virtualization still offers a benefit here.
- » **Mixed Workloads**: Physical servers will run a single instance of an operating system. So, you if you wish to mix Windows and Linux containers on the same host, you'll need to use virtualization
- » **Disaster Recovery**: Again, like capacity optimizations, one of the great benefits of VMs are advanced capabilities around site recovery and high availability. While these capabilities may exist with physical hosts, the are a wider array of options with virtualization.
- » **Existing Investments and Automation Frameworks** : A lot of the organizations have already built a comprehensive set of tools around things like infrastructure provisioning. Leveraging this existing investment and expertise makes a lot of sense when introducing new elements.
- » **Multitenancy**: Some customers have workloads that can't share kernels. In this case VMs provide an extra layer of isolation compared to running containers on bare metal.
- Resource Pools / Quotas: Many virtualization solutions have a broad feature set to control how virtual machines use resources. Docker provides the concept of <u>resource constraints</u>, but for bare metal you're kind of on your own.
- » **Automation/APIs**: Very few people in an organization typically have the ability to provision bare metal from an API. If the goal is automation you'll want an API, and that will likely rule out bare metal.
- » **Licensing Costs**: Running directly on bare metal can reduce costs as you won't need to purchase hypervisor licenses. And, of course, you may not even need to pay anything for the OS that hosts your containers.

Advantages of Docker

- » Easy installation
- » Every app, many environments
- » Repeatable build
- » Great hype, strong community, fast bugfixes
- » New virtualization processes
- » Con
- » Docker container type
 - » Host OS dependent
- » "Orchestration"
- » Networking

Docker cons

- » Docker container type
 » Host OS dependent
- » "Orchestration"
- » Networking
- » But: continous upgrades, developments
 - » E.g., Docker on Windows, Docker Swarm Mode
 - » Favored by the hype and strong community support

Security?

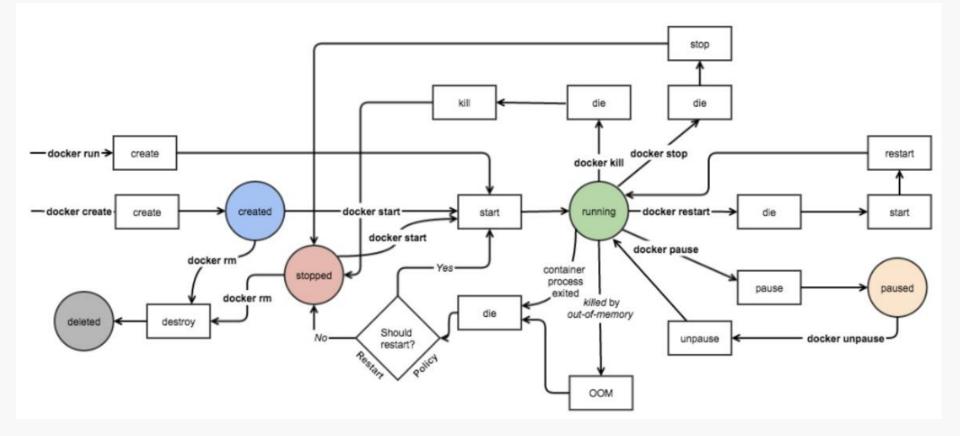
- » Docker over REST API / HTTP?
 - » Authentication!
- » Docker daemon runs with root priviliges
 - » Containers are then OK (in user space)
 - » Can they "reach back"?
- » docker-1.3 --cap-add, --cap-drop
 - » man capabilities
 - » "overview of Linux capabilities"
 - » "Starting with kernel 2.2"
 - » "per-thread attribute"
- » More developments in the make
 - » Docker daemon

Sources

» Docker story in a nutshell:

http://www.infoworld.com/article/3025870/paas/the-sunsets-on-original-docker-paas.html

» Docker overview:


http://www.linuxjournal.com/content/docker-lightweightlinux-containers-consistent-development-and-deployment

» "The Docker Book"

http://www.dockerbook.com/#toc

» Docker Meetup @Budapest http://www.ustream.tv/recorded/60277876

Docker state machine

» die, kill \neq destroy