

Cloud Networking (VITMMA02) Server Virtualization Data Center Gear

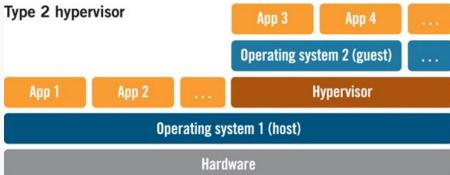
Markosz Maliosz PhD

Department of Telecommunications and Media Informatics Faculty of Electrical Engineering and Informatics Budapest University of Technology and Economics

SERVER VIRTUALIZATION

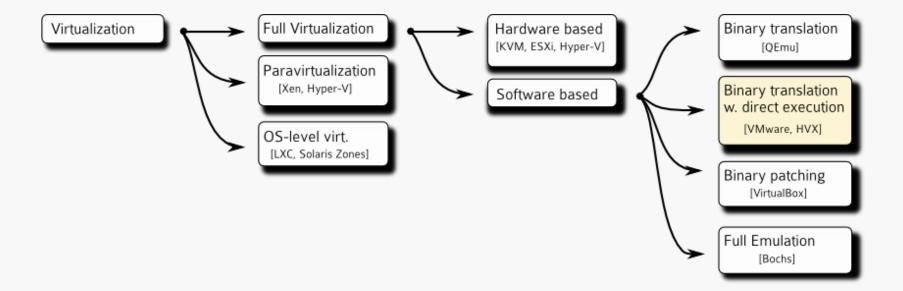
Server Virtualization

- » Low server utilization ⇒ virtualization
 - » PCs, servers: 10%
 - » storage: 50%
- » Server CPU and network bandwidth utilization is growing
 - » Started from: 2-4(-10) VM / physical server (Virtual/Physical Machine)
 - » today: 10-20 VM/PM
 - » for processes with low resource requirements even 100 VM/PM
- » Hypervisor
 - » virtual machine monitor/manager (VMM)
 - » terminology
 - » hardware: host
 - » VM: guest
 - » running VMs on the host
 - » separated memory and disk management, CPU scheduling



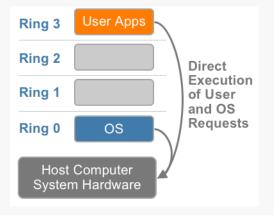
Server Virtualization

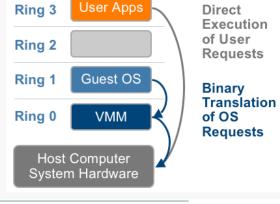
- » Hypervisor
 - » types, taxonomy: Gerald J. Popek and Robert P. Goldberg, "Formal Requirements for Virtualizable Third Generation Architectures", 1974
 - » Type 1: native (bare metal)
 - » hypervisor is running directly on the hardware
 - » e.g. Citrix XenServer, VMware ESX/ESXi, Microsoft Hyper-V
 - » Type 2: hosted
 - » hypervisor is running on the host OS (VM: guest)
 - » e.g. VMware Workstation/Player, VirtualBox
 - » other: Linux Kernel-based VM (KVM)
 - » running as a kernel module, host OS is converted to Type 1



Hardware

Types of Virtualization

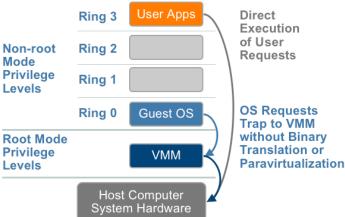




CPU Virtualization

- » 2005-2006 hardware support for CPU virtualization: Intel VT-x and AMD-V
- » Spread of virtualization software
- » x86 CPU virtualization

Privilege levels without virtualization

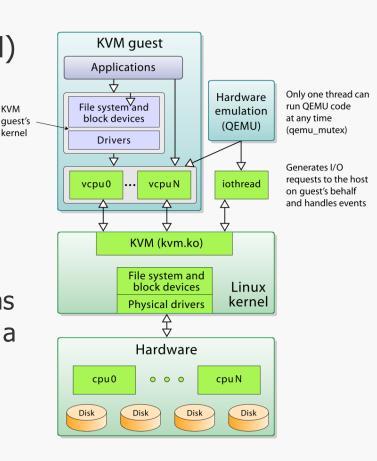


Full virtualization with dynamic binary instruction set translation

Paravirtualization (static translation)

Hardware - assised virtualization

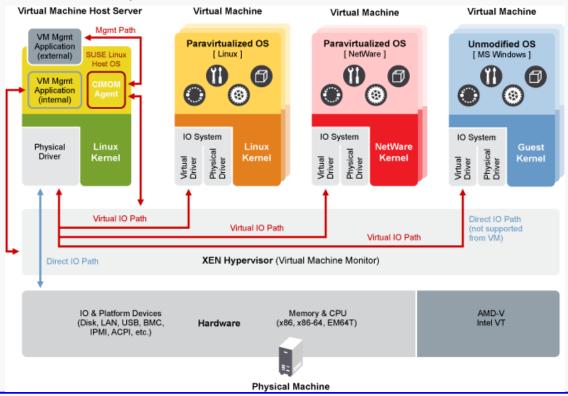
Source of figures: Vmware, Understanding Full Virtualization, Paravirtualization, and Hardware Assist, White Paper, 2007

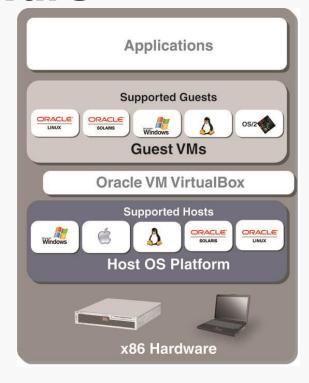


Platform Virtualization Software

- » Free and Open Source Software
 - » Kernel-based Virtual Machine (KVM)
 - » Type 2
 - » part of Linux kernel
 - » requirement: hardware-assisted virtualization

» QEMU


- » generic and open source machine emulator and virtualizer
- » emulation: can run OSes or programs
- » programs made for one machine on a different machine, by using dynamic translation
- » virtualization: Xen or KVM
 - » if host and guest is the same arch.
 - » otherwise only software virtualization



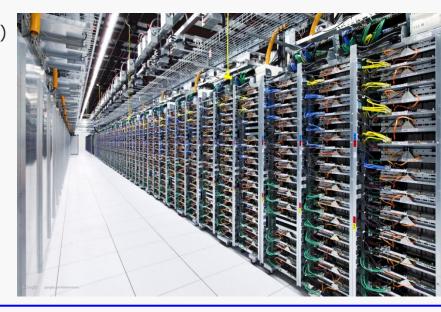
Platform Virtualization Software

- » Free and Open Source Software
 - » Oracle VirtualBox
 - » Type 2
 - » software- or hardware-assisted virtualization
 - » Xen
 - » Type 1
 - » paravirtualization or hardware-assisted virtualization

Platform Virtualization Software

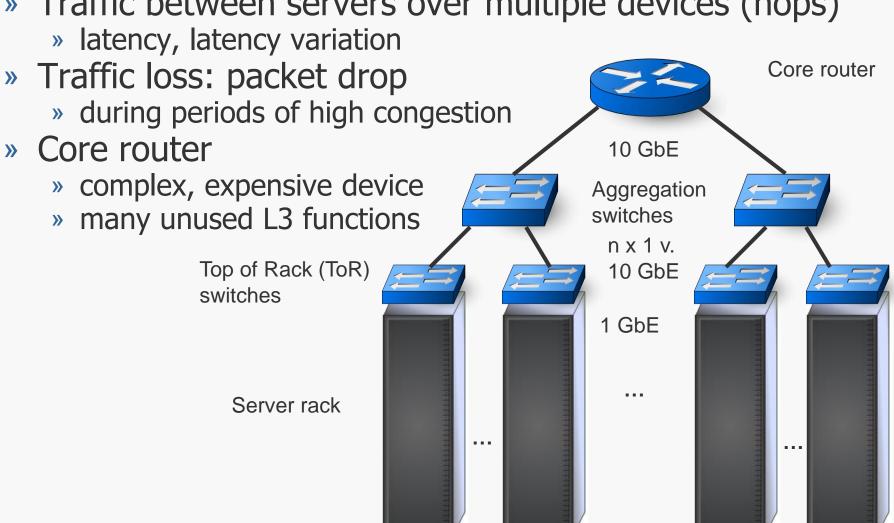
- » Closed Source / Commercial Products
 - » VMware ESXi
 - » Type 1
 - » paravirtualization or hardware-assisted virtualization
 - » small size: approx. 200 MB
 - » monolithic VMkernel
 - » hypervisor contains and manages all kind of device drivers
 - » Microsoft Hyper-V
 - » Type 1
 - » partitions
 - » parent partition (Admin, Management) : x86-64 Windows Server
 - » child partitions: VMs
 - » paravirtualization or hardware-assisted virtualization
 - » larger size: approx. 5GB core, or 10GB full
 - » mikorkernel
 - » device drivers at VM level

NETWORKING IN DATA CENTERS: NETWORK DEVICES



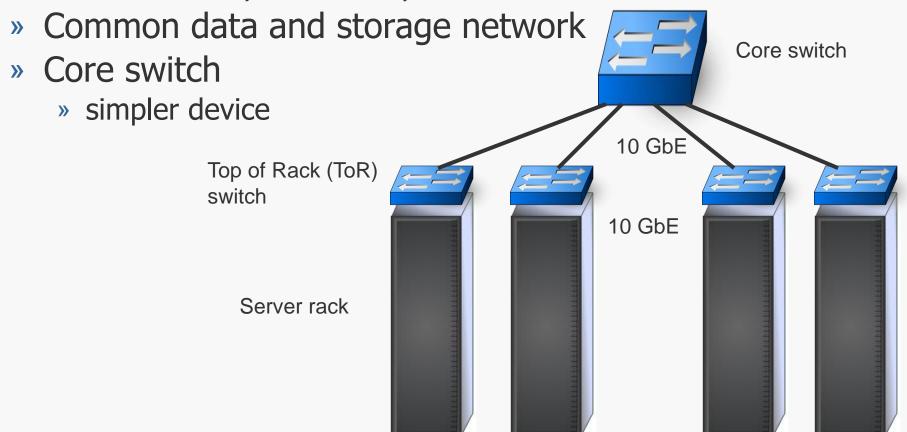
Data Center Network

- » Servers arranged in racks
 - » several 10 or 100 thousand servers
- » Reducing Capital and Operating Expenses (CapEx, OpEx)
- » Network devices
 - » Network Interface Card NIC
 - » switch, bridge
 - » router
 - » cabling (copper or fiber optic)
 - » new trend
 - build network hardware according to custom specification and add own software (e.g. Google) ⇒ Software Defined Networking (SDN)


Data Center Network

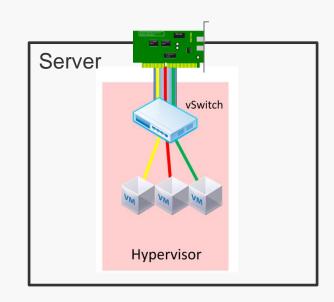
- » Why Ethernet?
 - » high performance-to-cost ratio
 - » ease of configuration
 - » high speed: 1, 10, 40 (, 100) GbE
 - » 10 GbE
 - » since 2006 devices appear on the marker
 - » since 2012 wide spread use
 - » storage network traffic
 - » Fibre Channel over Ethernet (FCoE)
- » Challenges
 - » different requirements compared to the LAN: scalability, reliability, bisection bandwidth, automated address allocation
- » Convergence
 - » not only data communication, but also storage network traffic is on the same network
 - » data loss not tolerated
 - » minimum bandwidth guarantees

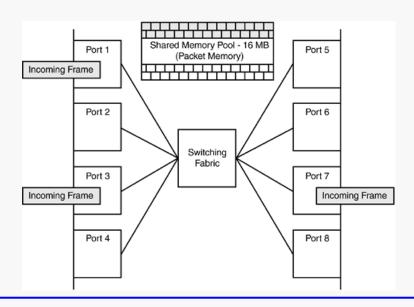
Enterprise Data Center


» Traffic between servers over multiple devices (hops)

Cloud Data Center

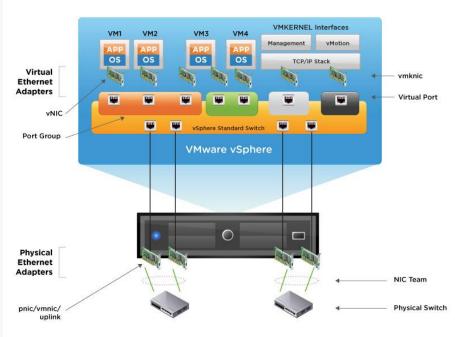
- » Traffic between servers over few hops
 - » flat(ter) network topology
 - » lower latency and latency variation

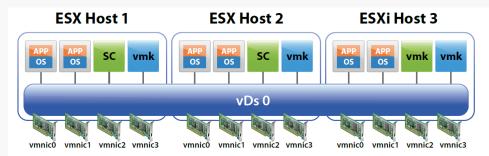

Data Center Switch Types


- » Virtual Switch, vSwitch
 - » between VMs on the same physical server
- » Top of Rack (ToR) switch
- » End of Row (EoR) switch
- » Aggregation switch
- » Core switch/router

Virtual Switch

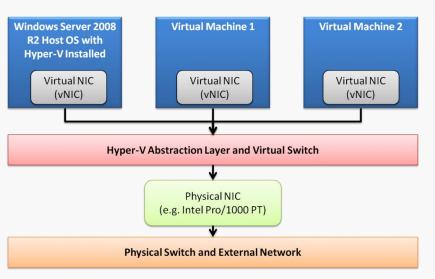
- » Hypervisor
 - » configuration of VMs and virtual switches
- » vSwitch
 - » attached to physical NIC, typically all VMs are connected to the same vSwitch
 - » limiting the bandwidth of the VMs input/output traffic
 - » server CPU is used for switching
 - » in practice the vSwitch is implemented with shared memory
 - » data (frames, packets) is stored in memory of the servera
 - » VMs exchange pointers to this data
 - » high bitrate!
 - » also part of the network
 - » uniform configuration and management would be ideal with the physical switches

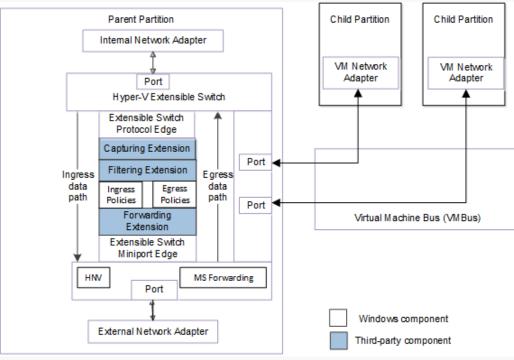




Virtual Switching: VMware vSwitch

- » multiple VM one (or multiple) NIC
- » software vSwitch hypervisor
 - » VMware vSphere (ESXi)
 - » vNetwork Standard Switch (VSS)
 - » abstract, distributed switch: vSphere Distributed Switch (VDS)
 - » unifying multiple physical servers
 - » New features (with significant CPU usage)
 - » traffic monitoring
 - » VLAN isolation
 - » traffic shaping (max. bandwidth)
 - » vMotion support





Virtual Switching: Microsoft Hyper-V

- » Private/Internal/External modes
- » Hyper-V switch: Windows Server
 - » Hyper-V Extensible Switch
 - » traffic classification, filtering and monitoring
 - » guarantee a minimum and/or limit the outbound speed
 - » congestion control
 - » VM queues
 - » live migration
 - » extensibility

Hyper-V Networking Basic Diagram

Virtual Switching: Open vSwitch

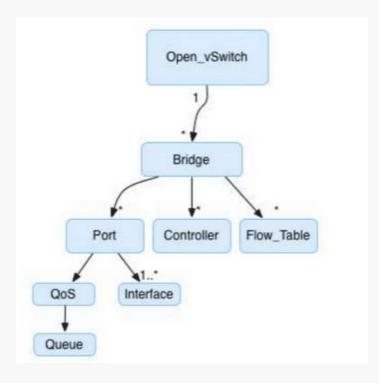
- » open source implementation
- » standard management protocols
- » Features
 - » Visibility into inter-VM communication via e.g. NetFlow
 - » 802.1Q VLAN
 - » STP (IEEE 802.1D-1998)
 - » QoS control
 - » Per VM interface traffic policing
 - » NIC bonding
 - » OpenFlow protocol support (including many extensions for virtualization)
 - » IPv6 support
 - » Multiple tunneling protocols (GRE, VXLAN, STT, and Geneve, with IPsec support)
 - » Kernel and user-space forwarding engine options
 - » user-space control

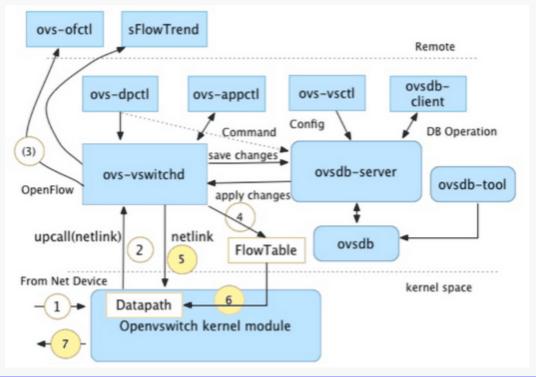
» Characteristics

- » Mobility of state: all network state (e.g. an entry in an L2 learning table, ACLs, QoS policy, etc.) associated with a network entity (say a virtual machine) should be easily identifiable and migratable between different hosts
- » Responding to network dynamics: VM startup, shutdown, migration
- » Maintenance of logical tags: tunneling, VM identification
- » Hardware integration: can be the control plane of a hardware switch
- » distributed vSwitch: with OpenFlow

» Platforms

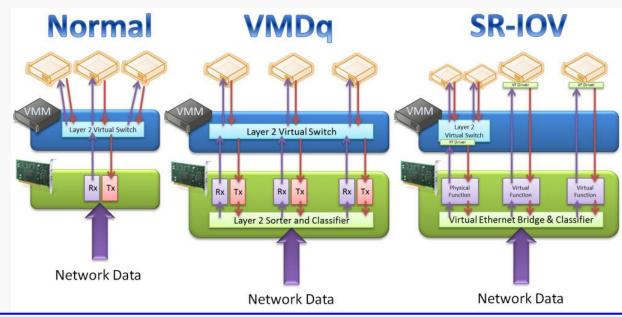
» XenServer, Xen, KVM, VirtualBox, OpenStack, OpenNebula, Linux (kernel), FreeBSD




Virtual Switching: Open vSwitch

Virtual Machines Application Database Firewall Web server server server Linux Linux Lesser OS Linux vNIC vNIC vNIC vNIC vNIC Virtual vSwitch vSwitch networking Hypervisor Server vNIC Physical networking

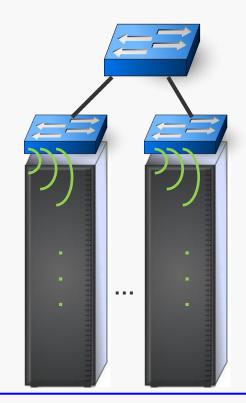
Open vSwitch data structures and architecture


Linux Bridge

- » alternative switch technology
- » simpler than OVS
 - » simple model, not flow-based
 - » forwarding layer in the Linux kernel
 - » less code-base
 - » easier to troubleshoot
 - » set-up: brctl, ip route
- » Tunneling
 - » supported GRE Tunnels
 - » VXLAN support: from Linux kernel 3.7 (2012)

Enhancing VM Network Performance

- » Virtual machine device queues (VMDq) Intel
 - » intensive CPU usage by vSwitch affects performance of the VMs
 - » VMDq implemented on NIC
 - » separate receive and transmit queues for VMs
 - » based on MAC address and VLAN tag information
 - » advantages
 - » parallelization
 - » filtering and sorting of packets is done by hardware
- » PCIe single-root IO virtualization (SRIOV)
 - » moves the vNIC functionality into the NIC
 - » one physical function (PF) with multiple virtual functions (VFs)
 - » vSwitch is by-passed, therefore it is used only in special applications
 - » DMA between VF and VM
 - » requires support from
 - » VM network driver
 - » hypervisor
 - » approx. 10-15% CPU load reduction



ToR Switch

- » Typical configuration
 - » servers connected using star topology
 - » 48 x 10 GbE port towards servers
 - » 4 x 40 GbE towards aggregation switche(s)
 - » 480 Gbps ⇔ 160 Gbps
 - » 3:1 oversubscription
 - » typical values: 2,5:1 − 8:1
 - » 1 rack 1 switch
 - » rack level redundancy
- » ToR switch
 - » low latency
 - » large address space tables
 - » also for storage traffic
- » Possible extra functions
 - » tunneling
 - » filtering
 - » metering
 - » load balancing

Advantages:

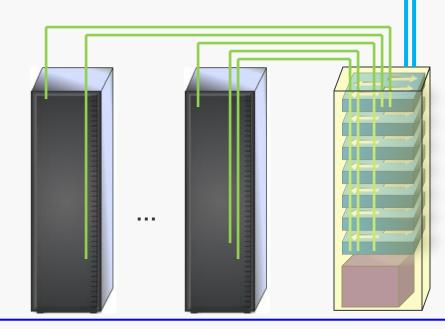
- shorter and simpler cabling
- rack level management/redundancy Disadvantages:
- more switches has to be managed
- scalability limits (STP, ports)
- control plane for each switch

EoR Switch

» Cost reduction

- » large number of switch components together connecting servers and core switch
- » like switch cards plugged into a modular chassis
- » sharing common power, cooling and mgmnt. infrastructure

» Cabling

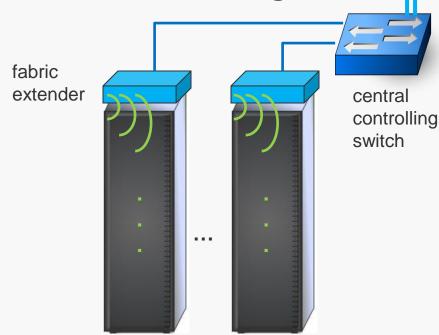

- » max. 100 m towards servers
- » cable distance ⇒ cost

Advantages:

- central management processor
- · less aggregation ports
- less STP instance
- one control plane

Disadvantages:

- · expensive, inflexible cabling
- longer and hard to handle cables
- row level management/redundancy



Fabric Extenders (FEX)

- » ToR / EoR hybrid solution
 - » like a logically a distributed EoR switch
 - » fabric extender on ToR: physical switch of limited functionality
 - » controlled and monitored by a central controlling switch
 - » cabling, like ToR switches

Advantages:

- central management processor
- · less aggregation ports
- less STP instance
- one control plane
- cost effective cabling
- rack level management/redundancy Disadvantages:
- not commonly used

Aggregation and Core Switches

- » Aggregation: connecting ToR switches and Core switch
- » Core Switch
 - » connection to the outside network
 - » high-bandwidth links and high port counts
 - » modular design: cards attached to a common backplane
 - » line cards (first stage)
 - » switch cards (second stage)
 - » processing cards (CPU, memory) e.g. firewall, load balancer
 - » management cards
 - » complexity can be reduced by simple packet forwarding rules using various types of forwarding tags