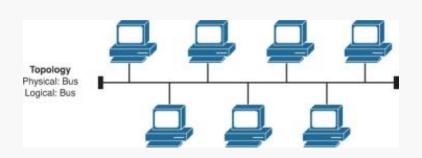
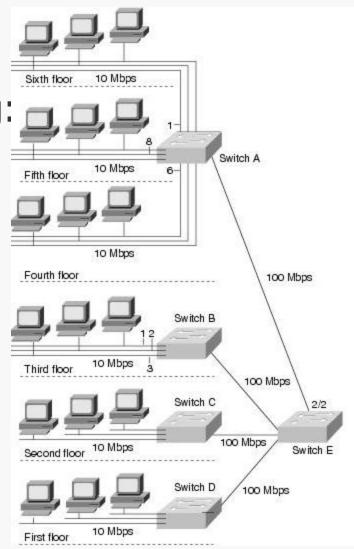


Cloud Networking (VITMMA02) Networks in the cloud

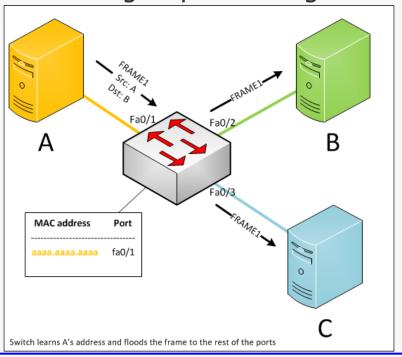
Markosz Maliosz PhD

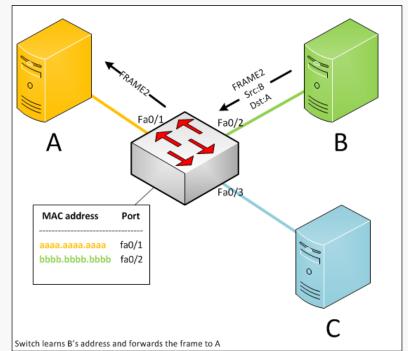

Department of Telecommunications and Media Informatics Faculty of Electrical Engineering and Informatics Budapest University of Technology and Economics


Spring 2018

Ethernet

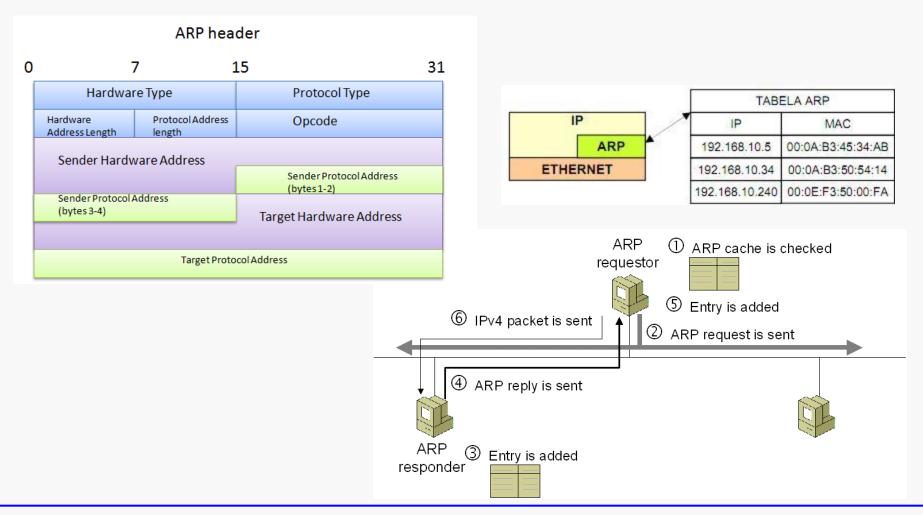
- » Layer2 network
- » Ethernet bridging or switching: bridged/switched Ethernet
 - » emulating shared media



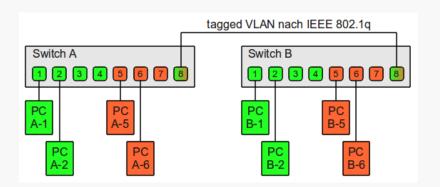

Backgrounder: http://www6.ietf.org/edu/documents/82-RoutingBridgingSwitching-Perlman.pdf pp.18-44

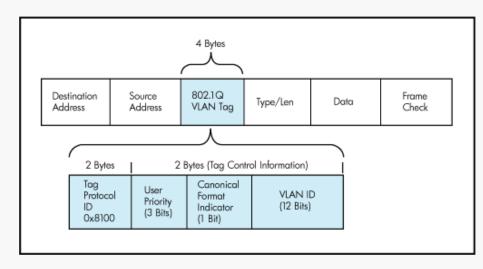
Ethernet

- » Spanning Tree Protocol (STP)
 - » https://cisco.goffinet.org/content/images/spanning_tree1.swf
- » MAC address learning
- » transparent bridging
- » flooding: broadcast, unknown unicast and multicast packets
- » possible errors: implementation error, misconfigration
- » forwarding loop is causing 100% CPU load for the affected switches



IP address and MAC address mapping

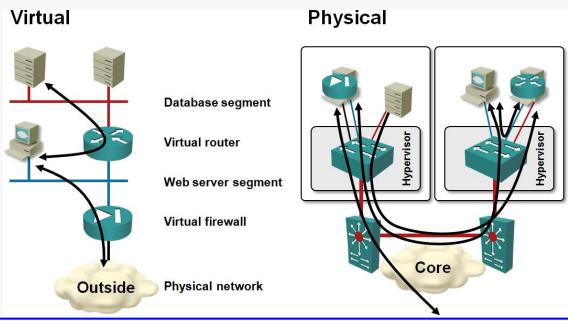

» Address Resolution Protocol (ARP)



Isolation: Virtual LAN (VLAN)

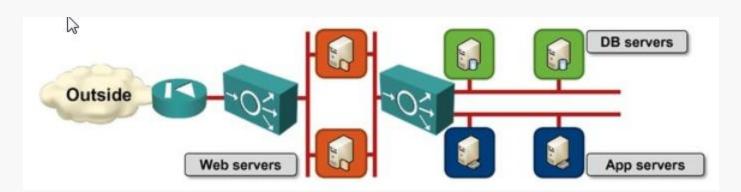
- » Isolated virtual network segments: VLANs (IEEE 802.1Q)
 - » without Layer3
 - » better scalability

- » Forwarding is based on VLAN ID and destination MAC
- » Ethernet Network Interface Card (NIC)
 - » MAC address filtering
 - » for one or several unicast and multicast addresses, processes only frames destined here
 - » Virtual Machines (VMs) on a physical machine (PM)
 - » many VM (and corresponding MAC addresses) on the same PM
 - » hypervisors usually set the physical NIC to "promiscuous mode" (accepting frames without filtering)
 - » each frame is processed with the help of the CPU


Scalability of VLANs

- » Maximum 4094 VLANs in an Ethernet network
 - » 12 bits VID (0x000 and 0xFFF reserved)
- » hypervisor physical NIC in promiscuous mode
 - » flooded frames are processed by CPU
- » Usual implementation
 - » all VLANs available on all server NICs
 - » hypervisor processes all flooded frames, even if there is no active VM in that VLAN on the host
 - » it is like we had only one VLAN

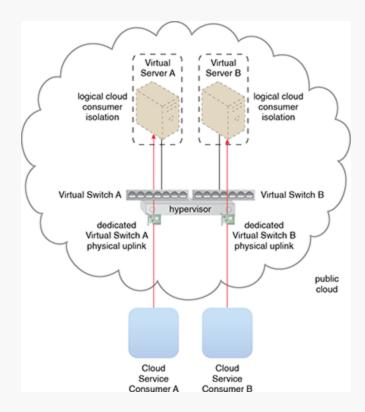
Virtual Network Architectures


- » One physical network many virtual networks
- » Many customer in the data center
 - » each customer has many VMs
 - » must work like they are on a private network
 - » adaptation to the changing needs
- » Tunneling, encapsulation
 - » one or more tag

Web Application Architecture

- » A complex application requires network functions too
 - » L2/L3 packet forwarding in multiple subnets
 - » firewall
 - » load balancing
 - » NAT
 - » VPN access

Web Applications in the Cloud

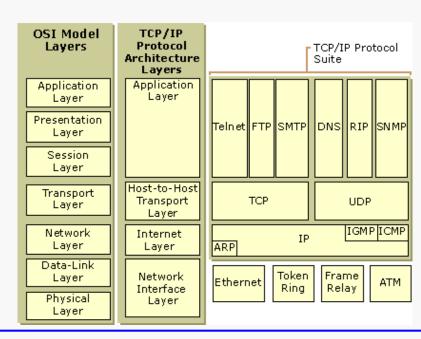

» For multiple customer all applications must be separated from the others

» Keeping the existing network connections in

operation

» internal addressing

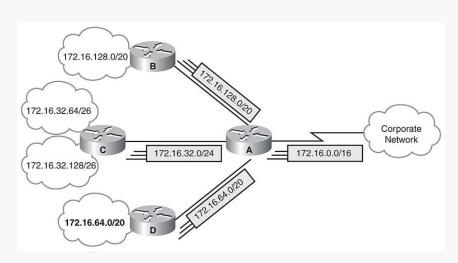
- » network services
- » security modell
- » virtual segments
- » QoS


Virtual Network Architectures

- » The important question: is it scalable?
- » Goal: scalable infrastructure for several thousand virtual networks
- » Scalability
 - » keep the performance with the increasing workload by adjusting the processing capability
 - » scaling up/down: vertical scaling
 - » larger resource (faster or more CPU, larger or quicker memory and storage drive)
 - » in the cloud the resources of the VM can be enlarged
 - » scaling out/in: horizontal scaling
 - » adding more server instances

Networking inside the Cloud

- » Internet
 - » world-wide, huge number of endpoints, it works quite good ©
- » Data center
 - » similar requirements
 - » even VMs in the order of million (e.g. AWS)
 - » exponential growth
 - » often the network bandwidth is the bottleneck
 - » Options
 - » Layer2
 - » switching
 - » simpler, plug-and-play
 - » VM migration keeps the IP address
 - » scalability?
 - » up to small and medium size
 - » typical in enterprise data centers
 - » Layer3 (Amazon, Facebook, etc.)
 - » routing
 - » scales well
 - » for any network size
 - » however not a "small Internet"



Networking in the Cloud

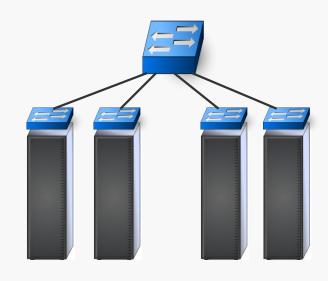
» Options

- » Layer2: Ethernet
 - » MAC address is location independent
 - » flat addressing
 - » scalability limit: learning all the MAC addresses in the switches
- » Layer3
 - » hierarchical address space
 - » routing information is aggregated

Spring 2018

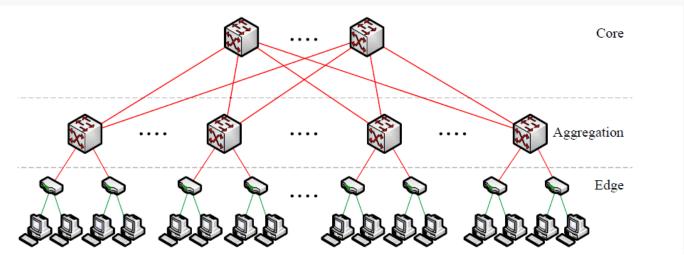
Networking in the Cloud

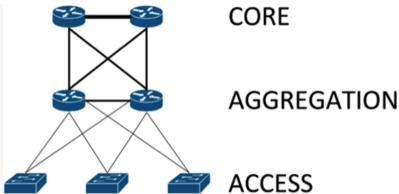
- » Layer2: Ethernet
 - » easy to configure and deploy: plug and play
 - » approx. up to 1000 servers
 - » communication within the local segment
 - » traffic destined outside of the segment is sent to the default gateway
 - » customer can manage the allocated IP address range
 - » starting new VMs
 - » change, reallocate IP addresses
 - » Spanning Tree Protocol
 - » no multipath


Networking in the Cloud

- » Layer3
 - » each network device is a router
 - » protocol: Open Shortest Path First (OSPF) or Intermediate System to Intermediate System (IS-IS)
 - » distributing topology information
 - » one VM one L2 "network"
 - » no L2 broadcast, multicast is difficult
 - » no VLAN
 - » e.g. Windows servers use broadcast to discover each other
 - » Equal Cost MultiPath (ECMP)
 - » better network bandwidth utilization
 - » shortest path
 - » Dijkstra's algorithm
 - » VM migration is more complex
 - » IP address change

Network Topologies

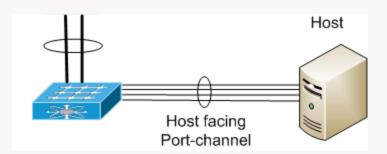

- » 3 level hierarchy: ToR, aggregation, core switch
- » flat(ter) topology, 2 levels: ToR and core switch
 - » one central switch: expensive, port number is limited
 - » e.g. the price of a 128 port GbE switch is approx. 100 times the price of a 48 port switch



Network Topologies

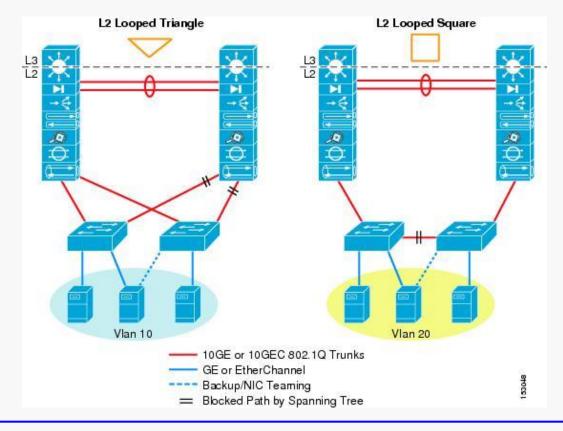
- » Redundancy and/or load balancing
 - » dual star





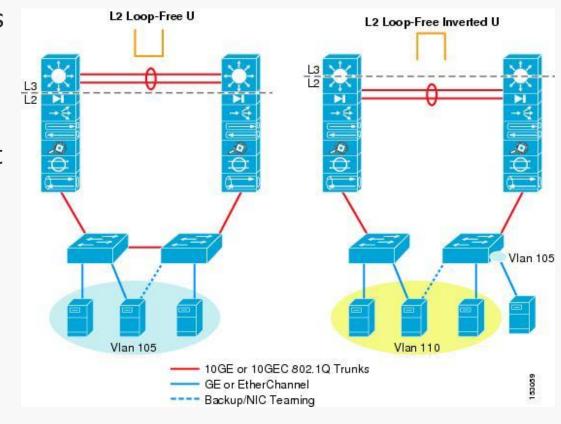
Server – ToR Switch

- » Single homed
 - » 1 server 1 switch
 - » resiliency can be provided by external mechanisms
 - » Single Point of Failure
 - » NIC, cable, switch port, switch
- » Multi homed
 - » 1 server 2 switches
 - » working/backup, primary/secondary
 - » simultaneous operation
 - » different MAC, IP addresses
- » Port-channel
 - » requires switch configuration
 - » one logical connection, aggregation of more physical links
 - » 1 server 1 switch
 - » 1 server more switches
 - » virtual port-channel
 - » ending on different physical switches
 - » shared or communicating control planes
 - » switches are also connected
 - » forming a ring if there are more than 2 switches



ToR – Core Switch

» Looped Topology


- » triangle
 - » wide-spread solution
 - » half of the connections are unused
 - » more ports on the core switch
- » square
 - » less redundant
 - » less ports on the core switch

ToR – Core Switch

- » Loop-Free Topology
 - » STP not running
 - » U
 - » ToR switch operates in transit mode in case of failure
 - » inverted U
 - » less ToR switch port
 - not applicable for single homed servers
 - » without network level redundancy

