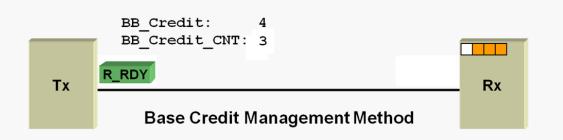
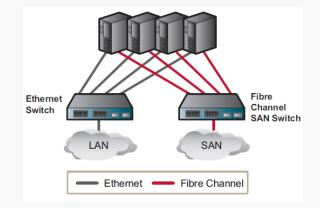


Cloud Networking (VITMMA02) Data Center Bridging, Network virtualization technologies

Markosz Maliosz PhD

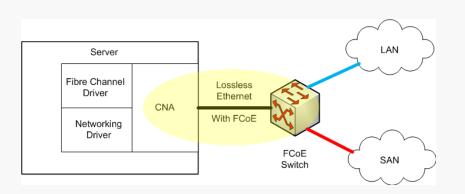
Department of Telecommunications and Media Informatics Faculty of Electrical Engineering and Informatics Budapest University of Technology and Economics

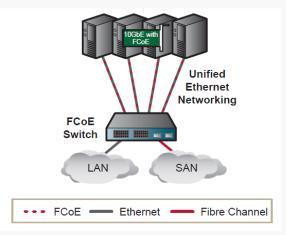

Spring 2017


DATA CENTER BRIDGING

Storage traffic in the data center

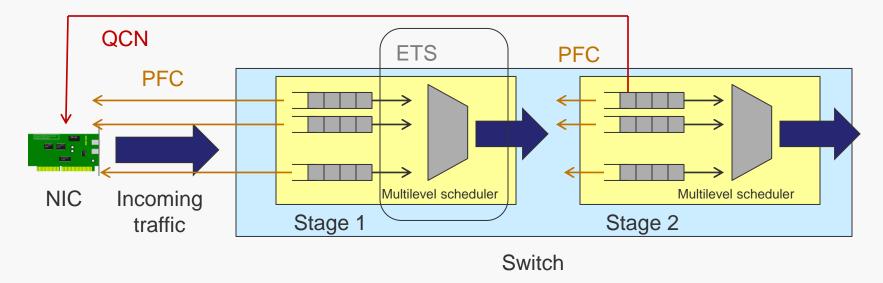
- » Earlier data centers
 - » Ethernet for data traffic
 - » Fibre Channel for storage traffic (SAN Storage Area Network)
 - » different dedicated networks
 - » optical or electronic interface
 - » 2, 4, 8, 16 Gbps
 - » in case of congestion no packet drops
 - » buffer credit based flow control
 - » buffer to buffer credit

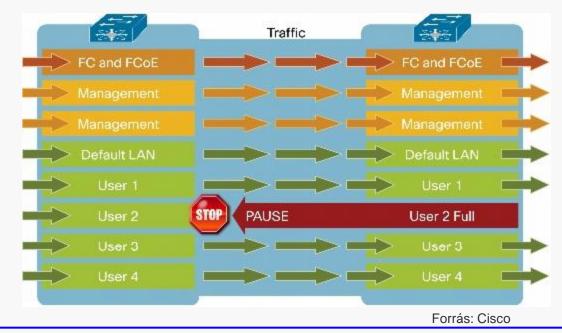




Fibre Channel over Ethernet (FCoE)

» Ethernet

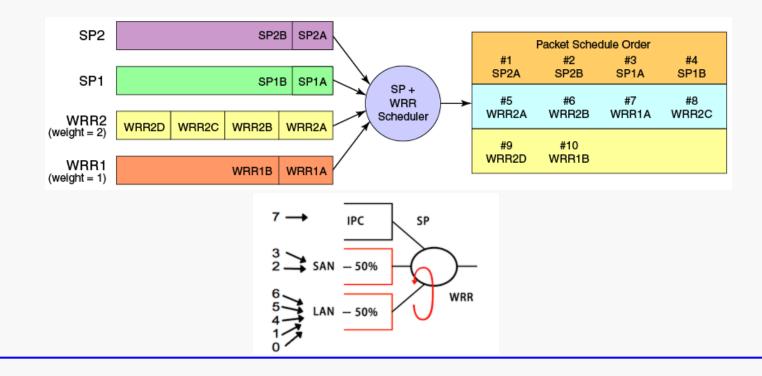

- » in case of congestion packets might be dropped
- » TCP: reliable delivery (retransmission)
 - » delay jitter
 - » not ideal for video and storage traffic
- » required extensions: DCB


Data Center Bridging

- » Ethernet extensions: (more) reliable delivery without the complexity of TCP
 - » Priority based Flow Control (PFC)
 - » Enhanced Transmission Selection (ETS)
 - » Quantized Congestion Notification (QCN)
 - » Data Center Bridging exchange (DCBx) protocol

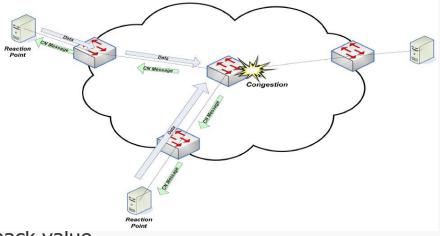
- » To provide lossless operation
- » IEEE 802.1Qbb
 - » link level
 - » between switches or switch stages
- » 8 priority class (802.1p): virtual lanes
- » inside switch: allocated memory partitions
 - » check if watermark is crossed
- » pause message includes a duration

Enhanced Transmission Selection


- » IEEE 802.1Qaz
- » Traffic classes
 - » classification
 - » rule based header matching: Access Control List (ACL)
 - » 3-bit priority filed in VLAN tag
 - » scheduling may by applied to Traffic Class Groups (TCG)
 - » an ETS capable switch is required to support for at least three traffic classes

Enhanced Transmission Selection

» Bandwidth allocation


- » bandwidth to be configured for each traffic class (max. 8)
 » with a granularity of 1% with allowed deviation of +/-10%
- » any unused bandwidth is available to other traffic classes
- » Implementation: scheduling and rate limiting, shaping

» PFC + ETS

- » lossless transmission and bandwidth guarantees
- » quick reaction time
- » however: many hops through switches and multi-stage switches inside the data center
- » QCN (802.1Qau): for minimizing transient congestions
 - » feedback to the source (ent-to-end)
 - » larger time-scale
 - » congestion point
 - reads the queue length from the switch, random sampling (depending on queue fill level)
 - calculates a feedback value based on the queue fill level info (quantized to 6 bits)
 - » sends back to source MAC address (reaction point)
 - » with probability of 1-10%
 - » updates the queue sampling rate
 - » reaction point
 - » rate limiting traffic based on the feedback value
 - » then slowly increased again

Quantized Congestion Notification

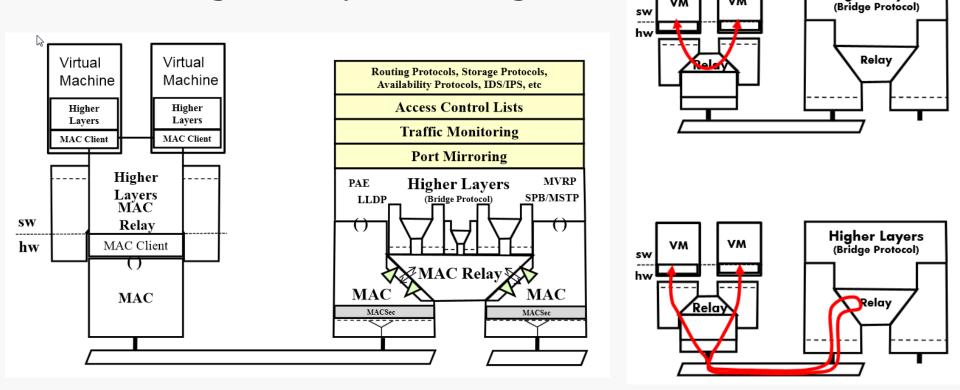
- » Rarely implemented in data centers
 - » the control loop is highly dependent on factors such as
 - » congestion point reaction time, time to send the QCN frame back through the network, and the reaction point queue throttling time
 - » requires a lot of fine tuning
 - » ideal for long lived flows
 - » uncertainty: frames are randomly sampled
 - » at the source one queue should be allocated for each potential congestion point
 - » operates inside L2 subnets
 - » traffic crossing a router lands in another QCN domain
 - » for high traffic rates the proper implementation is by hardware
 - » replacement of all NICs and switches

Data Center Bridging exchange (DCBx)

- » Coordination between neighboring devices
 - » PFC
 - » number of priorities or traffic classes
 - » ETS
 - » allocated bandwitdth units
- » Link Level Discovery Protocol (LLDP) messages
 - » Type-Length-Value structure
- » Operation
 - » sending side
 - » *suggests* parameter settings to the remote end
 - » sent at a periodic rate
 - » receiving side
 - » setting up parameters taking into consideration of the configuration received from the other side
 - » database update based on received data
 - » does not expect, process, or generate acknowledgements
 - » does not care what the remote side does

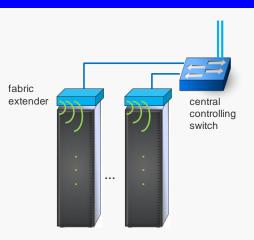
NETWORK VIRTUALIZATION TECHNOLOGIES

VM

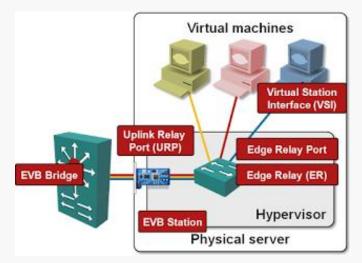

VM

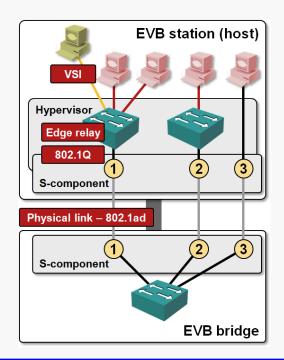
Higher Layers

Edge Virtual Bridging


- » ToR physical switch ⇔ virtual switch (Virtual Ethernet Bridge – VEB) capabilities
 - » filtering, security, monitoring, etc.

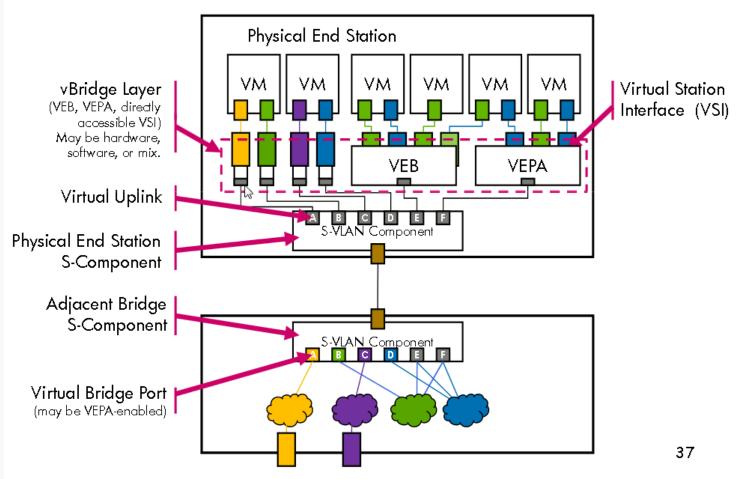
Forrás: Pat Thaler et al., IEEE 802 Tutorial: Edge Virtual Bridging, 2009.


Edge Virtual Bridging


- » EVB: IEEE standard
 - » interaction between the physical and virtual switches
 - » capability of the physical switch
 - » goal: handle all traffic uniformly
 - » Virtual Ethernet Port Aggregation (VEPA) 802.1Qbg
 - » server side capability
 - » all traffic is forwarded to the neighboring physical switch
 - » multi-channel: S-Tag (Q-in-Q)
- » Identifying virtual interfaces on a physical port
 - » Virtual Network Tag (VN-Tag), Bridge Port Extension 802.1Qbh, 802.1BR (E-Tag)
 - » ports configured by central controlling switch
 - » on fabric extender (S-Tag)
 - » on NIC of server (VN-Tag)
 - » for each vNIC a separate VN-Tag
 - » extra header containing Virtual Interface (VIF)

L2 configuration automation

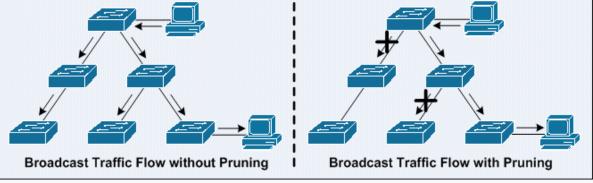
- » Edge Virtual Bridging
 - » Virtual Station Interface (VSI): VM NIC
 - » VSI Discovery and Configuration Protocol (VDP)
 - » EVB bridge receives info from the hypervisor before starting the VM
 - » VN-Tag: extra header for identifying vNIC (Cisco)
 - » local tag between the controlling switch and the fabric extender
 - » S-component
 - » multiplication of logical 802.1Q links over a physical link (Q-in-Q)



Edge Virtual Bridging

» Combining different technologies

Forrás: Pat Thaler et al., IEEE 802 Tutorial: Edge Virtual Bridging, 2009.


Evaluation

- » Virtual switch (VEB)
 - » forwarding by MAC + VID
 - » not needed
 - » MAC address learning, because VM addresses can be preconfigured
 - » STP, because located at the edge of the network
 - » traffic kept inside the server
 - » not visible, analyzable, filterable from outside
 - » better performance for VMs residing on the same server
 - » no common management with the physical switched
 - » CPU and RAM usage on the server
- » Applicability of technologies
 - » VEPA: hypervisor support required
 - » VN-Tag: special NIC required
 - » other directions
 - » physical switch features integrated into virtual switches
 - » other network virtualization and tunneling technologies (VXLAN, NVGRE, etc.)

- » EVB
 - all traffic crossing the physical switches (more advanced features)
 - » less network configuration task
 - » more traffic and delay in the network
 - » VEPA
 - » forwarding by MAC + VID
 - » function of virtual switch is kept
 - » Ethernet frames
 - » capability for sending the traffic back on the input port (hairpin)
 - » VN-Tag
 - » forwarding by tags
 - » new frame format

Network virtualization technologies

- » STP problems: routing (e.g. IS-IS) with MAC addresses
 - » Shortest Path Bridging MAC (SPBM)
- » limited number of VLANs: add another VLAN tag
 - » Q-in-Q, provider bridging, (IEEE 802.1ad)
- » MAC address limit: add another MAC address header
 - » Provider Backbone Bridges (PBB), 802.1ah
 - » Transparent Interconnection of Lots of Links (TRILL)
 - » bridging + routing
- » to avoid hypervisor flooding: consider VMs
 - » VLAN pruning: elimination of unnecessary traffic
- » to avoid flooding the core network: VLAN pruning in the core network

Network virtualization

- » VN-Tag identifies the VM, but not the tenant
- » Support for tenant separation
 - » Virtual Extensible LAN (VXLAN) RFC 7348
 - » Cisco, VMware
 - » transport of virtual L2 traffic over physical L3 network
 - » Network Virtualization using Generic Routing Encapsulation (NVGRE)
 - » Microsoft, Intel, HP, Dell
 - » Generic Network Virtualization Encapsulation (GENEVE)
 » superset of VXLAN and NVGRE
 - » Stateless Transport Tunneling (STT)
 - » Nicira ⇔ VMware

- » Pat Thaler et al., IEEE 802 Tutorial: Edge Virtual Bridging, 2009.
- » Overlay Virtual Networking Explained, Ivan Pepelnjak, NIL Data Communications, 2011.