Continuous Integration
Development Environment

Kovacs Gabor
kovacsg@tmit.bme.hu

Before we start anything

Select a language

Set up conventions

Select development tools

Set up development environment

Set up hardware and middleware
configurations

What is a good language?

 What is easy to refactor
— Later

* More difficult:

— No garbage collection

— No object orientation

What APIs to use?

e When to decide?

— Last responsible moment
— For most of the adopted technologies it is before
writing any code

* How to select the appropriate technologies,
APIls?

— Experience of team members
— Take dependencies into account
— If new, try it before use!

Development environment — client

* Use the same IDE

* Use the same version control system
* Binary repository client

* Desktop sharing tools

* VPN access

* Virtual machines

Development environment — central

* Version control server

* Continuous Integration server
— Plugins
— Reporting

* Binary repository manager

Version control

* What is version control?
— Records changes of files

— Controlled files or the whole project can be reverted
to a stable version

 What should be controlled?
— Source code
— Configuration files
— Plain text documentation

 What should not be controlled?
— Binaries (exe, jar)
— Non-plain text documentation (pdf, doc etc.)

Version control

* Version control system types:
— Local
— Centralized
— Distributed

e Version control methods:
— Backup files

— Store only differences (deltas), and apply patches
when upgrading or reverting

Local version control

* File backup into another directory
— Simple
— Uses a lot of disk space
— Accidental overwriting
— Difficult reverting

* RCS
— Local database
— Stores only patches in a version database
— No collaboration

Centralized version control

Provides collaboration

Popular: CVS, SVN

Version database is on a centralized server
Easy administration and access control

Stores only patches in the version database
The centralized server is a single point of failure

— Server goes down
— The repository gets corrupted

Distributed version control

Local mirroring of the central repository

— A corrupted version database can be restored
from the local ones

— Supports offline work

Popular: Git, Mercurial

Stores either files (Git) or patches (Mercurial)
Multi-level repositories for groups

A bit more difficult to administer and to use

Version control terms

Repository: where the master copy of version controlled files is
stored

Working copy: developers copy that is changed

Check out: get a working copy of a set of files from the repository
Commit: send changes to the repository

Revision, snapshot: a committed change of a set of files

Log message: a comment describing the changes in a commit
Update: fetch committed changes made by others

Merge: applying commits to the repository

Conflict: contradicting changes committed to the same region of
the same file by multiple users

Merge, patch

e Patch: a series of instructions to transform input text T to a
different T’
* Lines are numbered

* Two operations:

— Deletion of old text
* The index of the line where to start deleting text

* The number of lines to be deleted
— Addition of new text
* The index of line where to add the text
* The text to be added
— Replacement is the combination of a deletion followed by an
addition
* Merge tools

Controlled file states

Unchanged, current
Locally changed, current
Unchanged, out of date

_Locally changed, out of date

Version control — conflict

Iwo users read the some file ' They both begin to edit their copies
Repository Repository

A. A|
Read Read

C g
b 1] 1]]

Harry Sally Harry Sally

* Harry publishes his version first Sally accdentally overwrites Harry's version

Repository Repository
A | A” |

J L i

N B R

Harry Sally Harry Sally

Source: SVN documentation

Version control — conflict resolution

* Lock—modify—unlock:
— One person can change a file at a time
— Unlocking may require administrator intervention
— Editing different parts of a file is not possible
— Does not handle the functional dependency between
files
 Copy—modify—merge:
— Checkout a file at any time

— After a commit by another user the file becomes out-
of-date = user must update the working copy before
a commit

Version control — conflict resolution

e Automatic resolution:

— The version control system can do that if different
parts of the file have been edited

 Manual resolution:
— Same parts edited
— Semantic conflicts
— Coding conventions not kept
— Solution: user communication

Repository addressing schemas

The address is an URI

The URI is associated with the server and its the
authentication method, e.g.:

— File system path: the user must have read/write permissions
cvs —d file:///usr/local/cvs command

— SSH: the user must have a user account
cvs —d :pserver:user@server.com:/usr/local/cvs command

— HTTP: the user must pass through a web server authentication
svn co http://server.com/svn/project

— Custom protocol: custom authentication settings
svn co svn://server.com/svn/project

Revision labeling, numbering

98ca9 34ac2 f30ab

commit size commit size commit size

tree 92ec2 tree 184ca tree 0de24

parent parent 98ca9 parent 34ac2
author Scott - author Scott - author Scott
committer Scott committer Scott committer Scott

The initial commit of my project Fixed bug #1328 - stack overflow add feature #32 - ability to add new
under certain conditions formats to the central interface

Snapshot A Snapshot B

Version graph

Directed acyclic graph (DAG)
— Nodes: revisions

— Edges: commit
* From the node of the new revision
* To the node that the changes are made to

Each node (commit) has properties:

— author

— comment

— number (integer or hash)

Each node can be associated with arbitrary number of
labels used for version

— master: the default branch in the DAG

— HEAD: the branch the user is working on

Version graph

e Configuration:

— Set user data like user name and user email used in commits
git config --global user.name alice
git config --global user.email alice@server.com

— Set up an alias for commands
git config --global alias.ci commit

— Set core properties like the editor for commits
git config --global core.editor vi
* Configuration in configuration file
— Repository specific in <repository>/config, user specific in
~/.gitconfig, global in /etc/gitconfig

— The files store key=value pairs
[user]
name = Alice

Version graph

* How to get a repository?
— Initializing a local repository
* local: git init <directory>

— Initializing a central repository

* Bare repositories cannot be edited locally
e central: git init --bare

— Cloning a remote repository
 git clone <repository> <directory>

— First push to a remote repository
* git push origin master

Version graph

* Creating a new label for HEAD, a new

branch: master
git create branch testing

98ca9 - 34ac?2 - f30ab

testing

Version graph

e After checking out testing and commiting
git checkout testing
git commit —a —m ‘a change’

 Branch switch: files chanie

98ca9 - 34ac? - f30ab - 87ab2

testing

Version graph

* Checking out master again, the head pointer
moves

git checkout master

98ca9 e B 34ac? - f30ab - 87ab2

=

Version graph

e After a commit master and testing diverge
git commit -a -m ‘changes’

master

98ca9 - 34ac2 - f30ab

/ 87ab2
\

c2b9e

e

Version graph

° Merging master

Ancestor Snapshot to

Merge Into

. G
git merge master iss53 iss53

* Base is the common anscestor m

co B B C1 e Cc2 - Cc4

AN /

C3 - C5

==

A

C5

Version graph

* Remote branching

— Same graph, special labels, merging works the
same way

— Local vs. remote repository: <remote>/<branch>
* <remote> refers to a remote Git server

e <branch> refers to a local branch
* default remote is called origin

— Multiple remote repositories
* If the project is distributed to multiple Git servers
* Multiple master branches can exist

Version graph

 Local branch to remote branch
git push <remote> <localname>[:<remotename>]

* Remote branch to local branch
— Get all changes from the remote repository
git fetch <remote>

— Get all changes from the remote repository and merge with the
local changes

git pull <remote>

— Get all changes from the remote and forget all local changes
git checkout <remote>/<branch>

— Get the remote master branch
git clone <repository>

Version graph

* Branch management
git branch

* Branch states
— merged

— not merged
— head

e After merging merged branch can be deleted
git branch -d iss53

Version graph

* Progressive stability branches: labels along the
same branch

— master = stable or production
— testing
— development

Version control commands

New repository
— Initializing one in an existing directory
git init
Version control files
git add *.c
Remote files from version control
gitrm *.c
.gitignore file
What’s been changed
git diff
Committing changes
git commit -m “Message”
Rename or move a version controlled file: add + rm

Continuous Integration

Goal: be able to deploy for production all but the
last few hours’ work at any time

How?
— Integrate code every few hours
— Keep build, test infrastructure up-to-date

The integrated code must work on all machines
— “Works on my computer” is not sufficient

The build must not be cancelled
— To be able to find the location of errors in logs

Continuous integration

* How does it work?
— Fetch others’ work from the repository
— Test locally if local changes still pass tests
— Send local changes to the repository
— Take the integration token
— Trigger build

— Release the integration token if all tests pass,
otherwise fix error and repeat the procedure
holding the token

Build automation

* Local build
— Done every few minutes to test a new feature

— Allows build and test
* |Integration build

e Build time: local + integration — can be slow
usually because of the tests

— Distributed compilation
— Incremental compilation

— Multistage build:
* Run a few tests on commit
* Complete build asynchronously with all tests

Ten-minute build

* Programmers maintain a ten-minute build that
can build a complete release package at any time

— For release
— For new member of the team

* What does it cover?
— Compile sources
— Run tests
— Configure settings
— Initialize database schemas
— Set up web servers

Ten-minute build

* When to write the build scripts and
configuration files?

— Before things get out of control — at the first
iteration

— Difficult for existing systems with lots of
components

e Build scripts and tools should be version
controlled

Cl Server — Jenkins (Hudson)

* Prerequisites
— Java interpreter: Jenkins is written in Java
* Deploying
— Running the bundle starts an embedded web
container
java -jar jenkins.war

— Deploy the war in any Java web container

Jenkins configuration

* Mandatory:
— Version controller configuration: cvs, svn, git etc.,
flags
— Version control repository: address,
authentication
— Build scripts: a set of command that transforms
the source code into artifacts

* Not just compiling, but packaging as well

Jenkins configuration

e Optional:
— Interpreters
— Build engine
— Binary repository and dependency manager

* Security

— Authentication: LDAP, Jenkins’ database,
container’s database

— Authorization: free for all, login required, policies

Jenkins build

* |nputs:
— Source code in any language, not just Java
— Configuration files: property files, XML
— Resources: images, static web pages
* Outputs:
— Binaries: jar, exe, dll, so
— Installer
— Documentation: javadoc, doxygen
— Source package

Jenkins build

* Build configuration file

 The work is done by a build engine: make, ant,
maven, rake or a custom shell script

 Build can execute tests

e When to build?

— Scheduled, cron-like
— On demand, triggered on the web page
— On commit

* Feedback: email, RSS, on the web page

External dependencies

* Where to put project dependencies?
— Source repository
— Dependency management

Jenkins plugins

* Code quality
* Reporting
* Documentation

Later...

Binary repository manager

e We said that

— Source files are version controlled
— Binaries should not be version controlled

 What to do with object code?

Binary repository manager

* Repository manager stores artifacts
— Build versions
— Test versions
— Source in a binary archive
— Dependencies, third party libraries
— Documentation in a binary archive

— Build metadata: like date and time

Binary repository manager

e Artifacts are language and target dependent
— C/C++: zip or tar
— Java: jar, war, ear
— Windows: dll
— Linux: tar with metadata like deb or rpm

Maven

* Maven is:

— Command line Java tool for Java projects: compile,
test, package, deploy etc.

— Dependency management tool
— Artifact repository

* An artifact (project) is described with a POM
(Project Object Model) that is an XML file:

— groupld, artifactld, version and dependencies

 Maven goals, archetypes: what to do with a POM
— Similar to Ant tasks
— It is a plugin

