

C-V2x Intelligent Transportation Systems

Rolland Vida

IEEE 1609.x

- IEEE 1609.2 security services
- IEEE 1609.3 management services
 - Channel usage monitoring
 - Received channel power indicator (RCPI)
 - Management parameters
- IEEE 1609.4 QoS and multi-channel access
 - User Priorities mapped to Access Categories in EDCA
 - Multi-channel access for single radio 802.11p devices

IEEE 1609.4 channel swithcing

- 7 FDMA channel frequencies
- Multi-channel radios can send and receive over several channels simultaneously
 - Might have problems with interferences between channels
- Single channel radios to access both CCH and SCH
 - Either transmit or receive on a single 10 MHz channel
- Alternating access
 - Repetitive periods of 100 ms
 - 46 ms allocated to the CCH channel
 - 46 ms allocated to the SCH channels
 - 4 ms guard interval for switching between CCH and SCH
 - Nodes should wait for a random backoff after the end of the guard interval, before starting to transmit
 - Time synchronisation needed to an external time reference
 - Coordinated Universal Time (UTC) from GPS or other devices
 - WAVE Time Advertisement (WTA) frame

(Sw +) CCH (46ms) (Sw +) SCH (46ms) [0] [0] [0] [1]

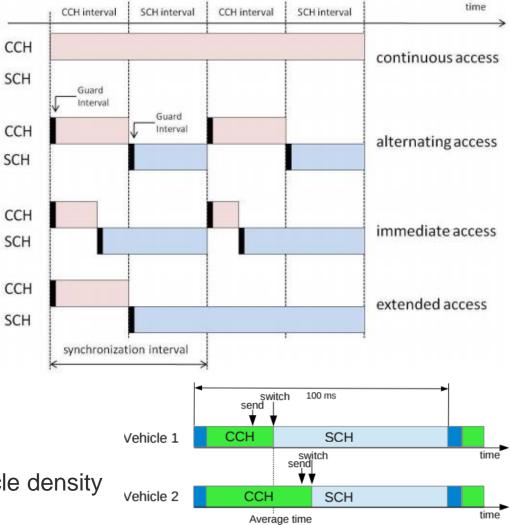
IEEE 1609.4 channel switching

Continuous access

- Transmission can be continuous on the CCH and all SCHs
- It cannot be guaranteed that all other stations will listen to the CCH outside the CCH slot
- Safety messages sent over the CCH in the SCH slot might be ineffective
- The usage of SCH not efficient if nodes listen to the CCH 50% of the time
- Alternative solutions to minimise the impact of channel switching?

IEEE 1609.4 channel switching

Immediate access


- The node does not have to wait until the CCH slot is over
- After the CCH transmission is over, switch to SCH
- Improve the performance of bandwidth-demanding non-safety applications in SCH, at the expense of the CCH

Extended access

Transmission on the SCH without waiting for the CCH

Adaptive Independent Channel Switching

- If more vehicles, more beacons on the CCH
- Nodes can change their average switching time based on vehicle density
 - Long SCH intervals if not many vehicles
 - Fewer collisions at the start of the SCH, as nodes switch independently of each other
- Drawback is that not all nodes on the CCH in the same time
 - Vehicle 1 will miss the beacon of Vehicle 2

5

SCH

SCH

SCH

IEEE 1609.4 channel switching

Fragmentation

- To better utilise the residual time at the end of the SCH interval
- An extra fragmentation header should be used, which is a drawback
- Works for large packets (TCP)

Best-fit scheme

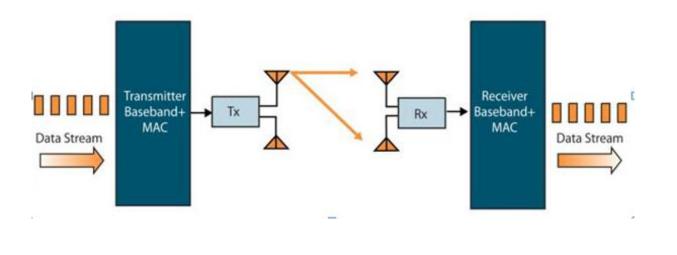
- Send the packet that best fits the residual time at the end of the SCH interval
 - Better than fragmentation only if packets of different sizes are present in the queue
- Hard to know in advance the actual duration of transmission
 - Frequent changes in the channel congestion
 - Stochastic nature of backoff

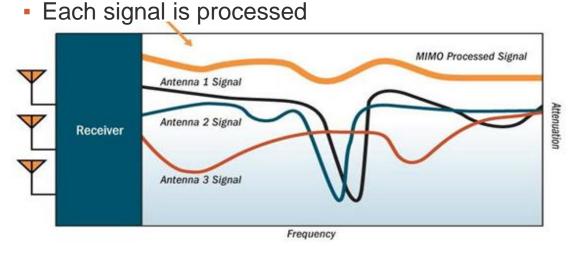
IEEE 802.11bd

IEEE 802.11p (2010)

- Based on IEEE 802.11a
- Since then, new standards, more efficient, higher throughput, lower latency

IEEE 802.11bd

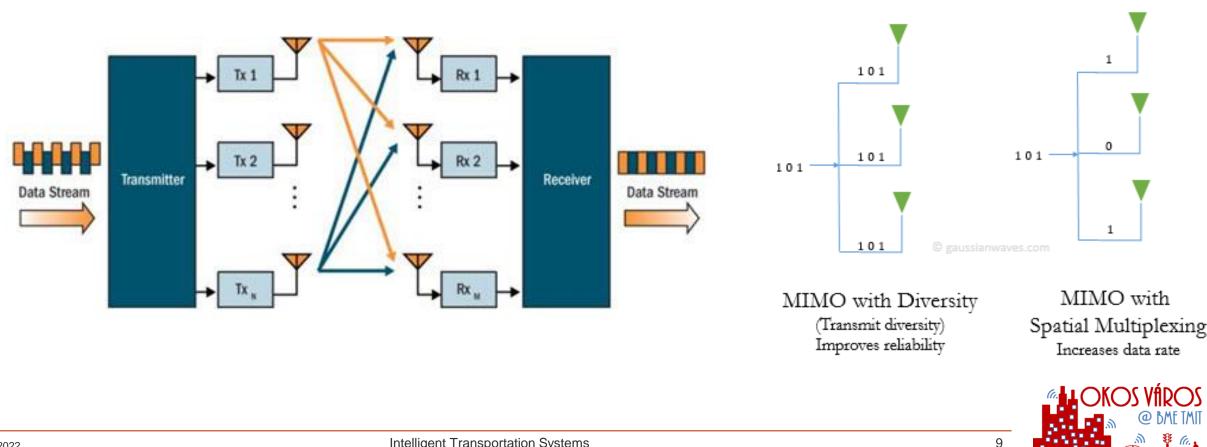

- Working group established in 2019
- Standardisation ongoing, expected to end in 2022 végére
- Based on IEEE 802.11ac (WiFi 5)


MIMO – Multiple Input Multiple Output (WiFi 4, 2009*)

More transmitting and receiving antennas (e.g., 3 x 3)

- **Traditional sending:** 1 sender, 2 receiver antennas
 - The receiver processes only the best quality signal

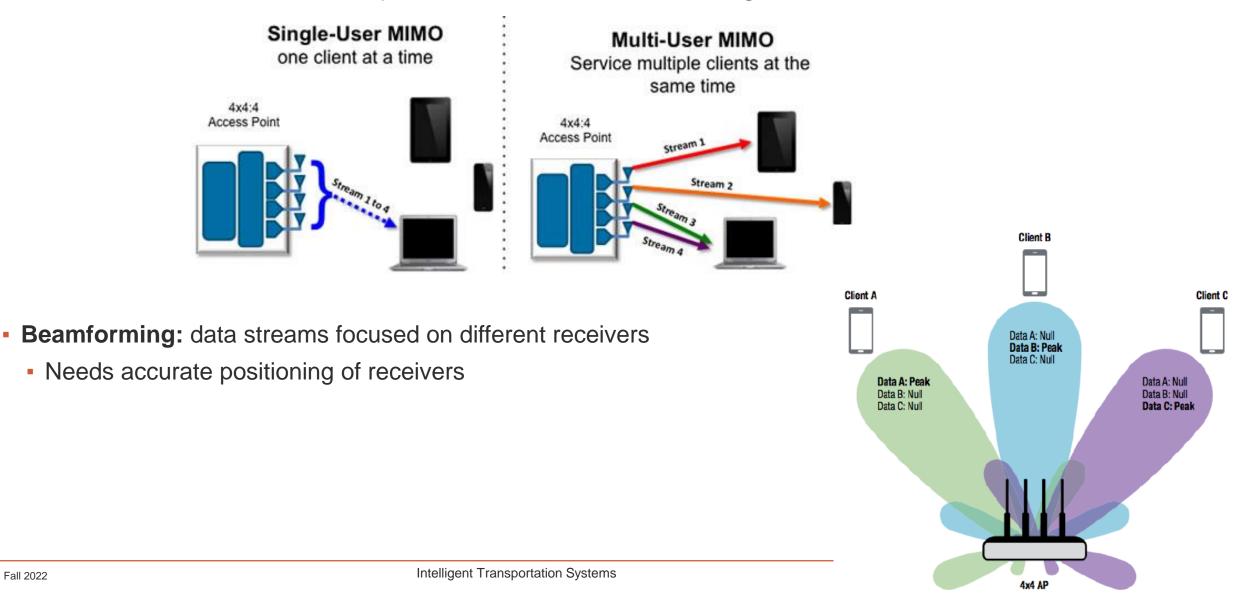
- MIMO sending: e.g., 3 sending, 3 receiver antenna
 - Each sender sends the same signal
 - Each receiver hears each sender
 - Different quality, antenna diversity



* The frst iPhone appears in 2007-ben, more and more WiFi enabled devices since then, need for higher data rates

Spatial multiplexing (WiFi 4)

- Data is divided, each antenna sends a different data stream
 - Similarly to OFDM, where different data on each carrier
- Each receiver receives data from each sender, with different quality



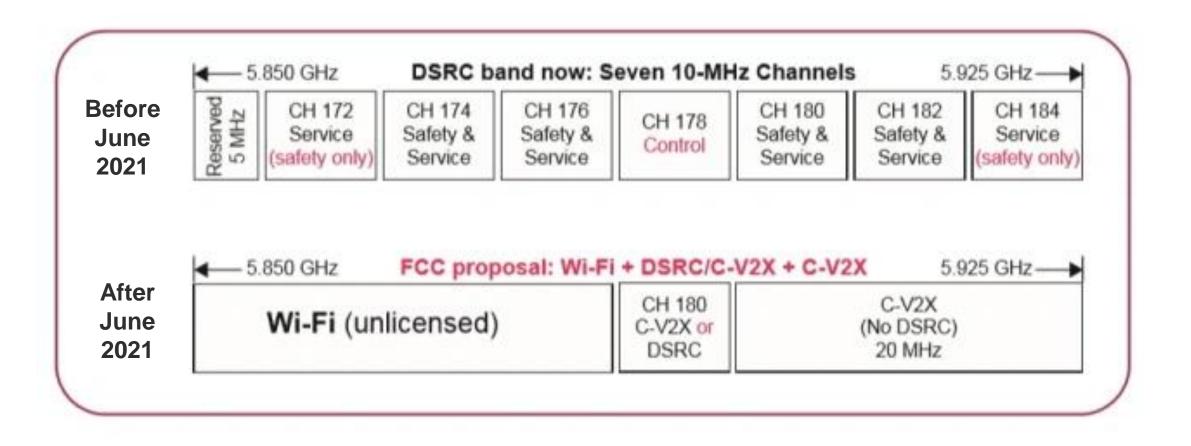
Transmit antennas

Transmit antennas

Multi-User MIMO (MU-MIMO) and Beamforming (WiFi 5, 2013)

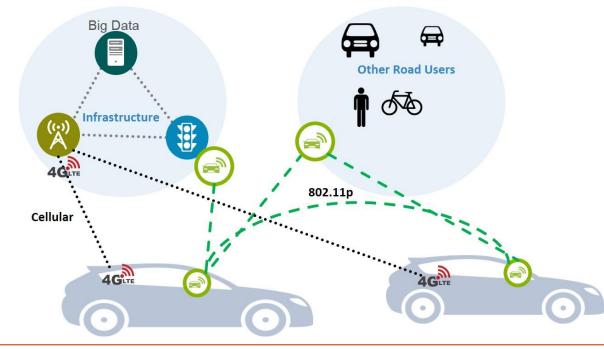
• **MU-MIMO:** More receivers in parallel, streams divided among them

802.11bd (based on WiFi 5)


- 20 MHz channels instead of 10 MHz
- 256-QAM instead of 64-QAM modulation
- Support for MIMO and spatial streaming
- Twice as large transfer speeds as in 802.11p
- Twice as large communication distance as in 802.11p
- Works for larger vehicle speeds as well (max. 500 km/h, instead of max. 200 km/h)

IEEE 802.11bd^{DC}

- DC Dual Carrier Modulation
 - On the 20 MHz channel, each signal is transmtted over two subcarriers in parallel
- More reliable transmission
- Based on the IEEE 802.11ax (WiFi 6) standard

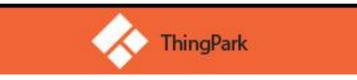

New FCC rule (effective of June 2021)

802.11p or C-V2x?

- Requirements for Cooperative ITS systems
 - High relative speeds between transmitters and receivers
 - Extremely low latency in safety-related applications (<50 ms)
 - Tolerate high load generated by periodic transmission of multiple messages, and high vehicle density
 - V2x messages are mostly local in nature, are important for nearby receivers

Cellular and IEEE 802.11p for C-ITS

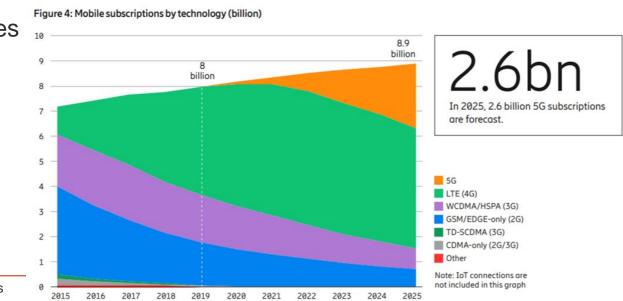
C-V2x: Cellular Vehicle to Everything



802.11p or C-V2x

802.11p is here today

- Standard approved in 2009
- Several ETSI ITS plug-test events
- Extensive field trials
 - Safety Pilot, Drive C2X, Score@F, simTD, etc.


- Significant efforts in the last 10 years to validate 802.11p
 - This should be re-done for any other alternative technology

802.11p or C-V2x

- Some argue that Cellular-V2x is still far out
- Cellular technology is by far the most successful wireless standard
 - 5.5 billion mobile broadband subscriptions in Q2 2018
- LTE (Rel. 8) dates back to 2009, 5G under deployment in 2022
 - Extensive cellular infrastructure, it takes time to upgrade
 - ~ 5 billion LTE subscribers still in 2025, next to 2.6 billion 5G subscribers
- LTE Rel. 8. can only address basic ITS use cases
 - No support for low latency and high mobility use cases
 - 3GPP V2x study group established in 2015

Mobile subscriptions worldwide. Source: Ericsson Mobility Report, November 2019

State of LTE in 2018

- LTE coverage still far from 100%
 - Not geographic coverage, but percentage of time when LTE signal available to users
 - Around 65-68% in Germany, France
 - Extensive 3G infrastructure

ROS

DMF TMI

LTE support for V2x applications

LTE Release 8 can cover most of the V2I – I2V non-safety use cases

- Problem with very congested scenarios
 - evolved Multimedia Broadcast/Multicast Service (eMBMS) in LTE-A (Rel. 9)
 - Designed to support static scenarios crowds in football stadiums
 - Not efficient when a large number of incoming and outgoing vehicles

 Problems with handovers between MNOs (mobile network operators) and cooperation between application service providers

LTE support for V2x applications

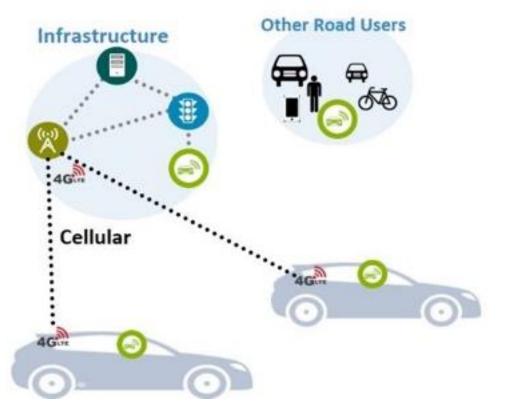
- Safety-related use cases represent the real challenge
 - Need complete coverage along the roads (which is not yet the case)
 - Need to handle high bandwidth with very low latency
- Some V2V use-cases require continuous information exchange (1 20 Hz)
 - Cooperative Awareness Messages (CAM) autonomous cars
 - Too much data for LTE networks to handle
 - Example: 256 bytes/message, 10 Hz, 2 hours of driving/day = 0.5 Gbyte per month per car
 - At the receiver side, assuming 30 cars in the area of interest, roughly 15 Gbytes per month
 - 1 autonomous car in 2020 4 Tbyte per day (generated inside the car, not transmitted entirely)
- MNOs typically bill based on resources used (\$ / bit / s), but V2V traffic should be free
 - Alternative business model to be developed to justify investments

THE COMING FLOOD OF DATA IN AUTONOMOUS VEHICLES

SONAR D-100 K PER SECOND

CAMERAS ~20-40 MB PER SECOND

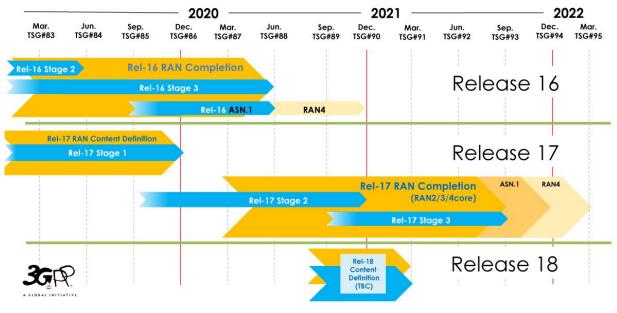
intel



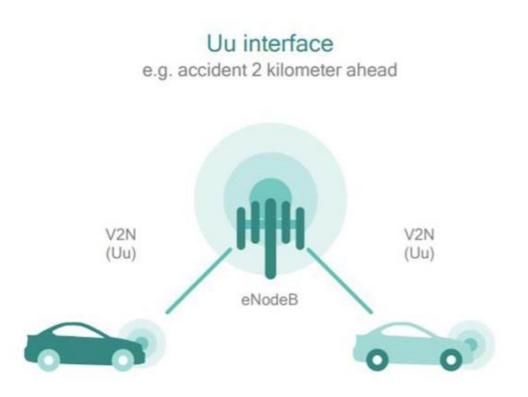
LIDAR ~10-70 MB PER SECOND

Intelligent Transportation Systems

LTE support for V2x applications


- Some V2V use cases do not require high bandwidth, but very low latency
 - event-based broadcasting of Decentralized Environmental Notification messages (DENM) e.g. fast braking
- Could work in the cellular network, but not always
 - Across multiple MNOs, across borders, across cells
- Another solution: develop direct communication technology, as part of the cellular system
 - Device-to-Device communication, part of Release 12, but not suitable for V2V
 - If two devices want to communicate directly, the network allocates the time / frequency resources
 - The network manages the interference generated by the D2D communication
 - Signalling/control via the eNodeB
 - Direct data sending between the UEs
 - D2D will not work if no continuous network coverage

C-V2x evolution


- LTE-D2D Release 12 (2012)
- C-V2x Phase I– Release 14 (started in 2014, published in 2016)
 - V2V, V2I, V2N support
- C-V2x Phase II Release 15 (published in 2018)
 - 5G support (called also 5G-V2x)
- C-V2x Phase III Release 16 (2020)
 - Enhanced 5G support
 - Also called NR-V2X

C-V2X defines two complementary transmission modes

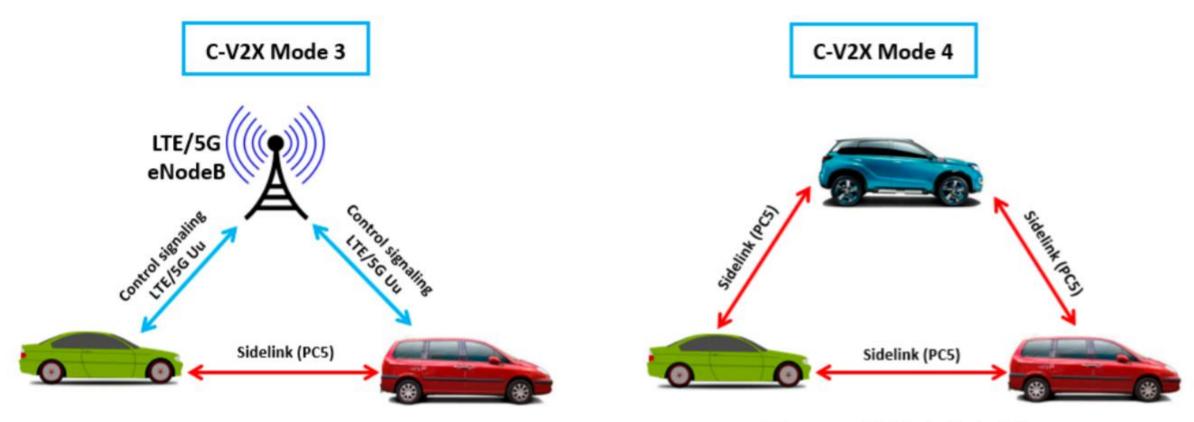
Network communications

V2N on "Uu" interface operates in traditional mobile broadband licensed spectrum

On the traditional cellular spectrum

Direct communications

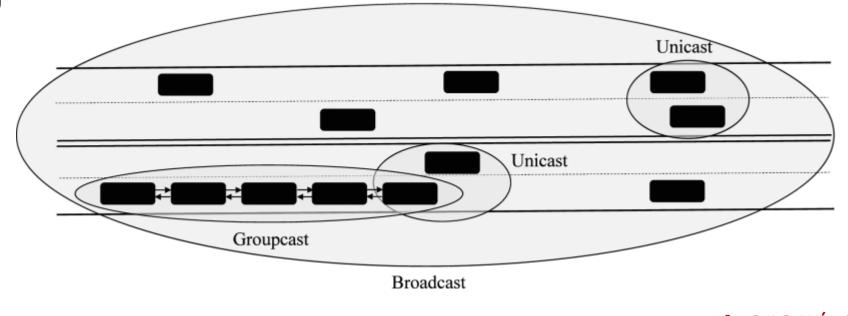
V2V, V2I, and V2P on "PC5" interface¹, operating in ITS bands (e.g. ITS 5.9 GHz) independent of cellular network


PC5 interface

@ BME

C-V2X Sidelink (PC5) Modes in Rel. 14/15

Network controlled (Centralized) scheduling


Autonomous(distributed) scheduling

Communication modes

LTE-V2X – only broadcast communication NR-V2X:

- Unicast direct communication between two vehicles
- Broadcast everyone within radio range
- Groupcast e.g., platooning

NR-V2X frequencies

- NR-Sidelink (Rel. 16) frequencies
 - 5,9 Ghz together with other technologies (pl. IEEE 802.11p/bd)
 - 2,5 Ghz only NR-V2X
- Supported channel sizes 10, 20, 30, 40 MHz

Carrier spacing

- For LTE-V2X fixed carrier-spacing (15 kHz)
- For NR-V2X variable carrier spacing (15, 30, 60 kHz)

HARQ (Hybrid Automated Repeat Request)

- feedback from the receiving vehicle
- ACK/NACK –based feedback in case of Unicast
- NACK-only feedback in case of Groupcast

Sidelink optimization in Rel. 17

Power saving for Battery-powered UEs

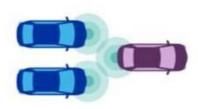
- Typicaly for the NR-V2X devices carried by pedestrians, bikers
- In Rel. 16 "always on" operation

Sidleink DRX mode (Discontinous Reception)

- Coordinating the sleeping cycles among UEs
- Improving reliability and latency
- Sidelink Relaying
 - UE-to-Network
 - UE-to-UE
 - In Rel. 16, only support for single-hop
 - Relay discovery, selection, authorization

Continuous V2X technology evolution required

And careful spectrum planning to support this evolution


Evolution to 5G, while maintaining backward compatibility

Enhanced safety C-V2X R14/15

Enhanced range and reliability

Advanced safety C-V2X R16 (building upon R14)

Higher throughput Higher reliability Wideband ranging and positioning Lower latency

27

for V2X

Basic safety

802.11p or C-V2X R14

Established foundation

21

V2P Vehicle-to-pedestrian e.g., safety alerts to pedestrians, bicyclists

Vehicle-to-vehicle

e.q., collision avoidance safety systems

000

5

V2I Vehicle-to-infrastructure e.g., roadside traffic signal timing/priority

5G

Vehicle-to-network e.g., real-time traffic/routing, cloud services

C-V2X

Rel 14/15 C-V2X established basic safety Rel 16 NR C-V2X saw continued evolution for advanced use cases

Release 14/15 C-V2X standards completed

Broad industry support with 5GAA

Global trials started in 2017; first commercial deployment expected in 2020

Qualcomm[®] 9150 C-V2X chipset announced in September, 2017

Integration of C-V2X into the Qualcomm[®] Snapdragon[™] Automotive 4G and 5G Platforms announced in February, 2019

Driving C-V2X global presence with trials and demos

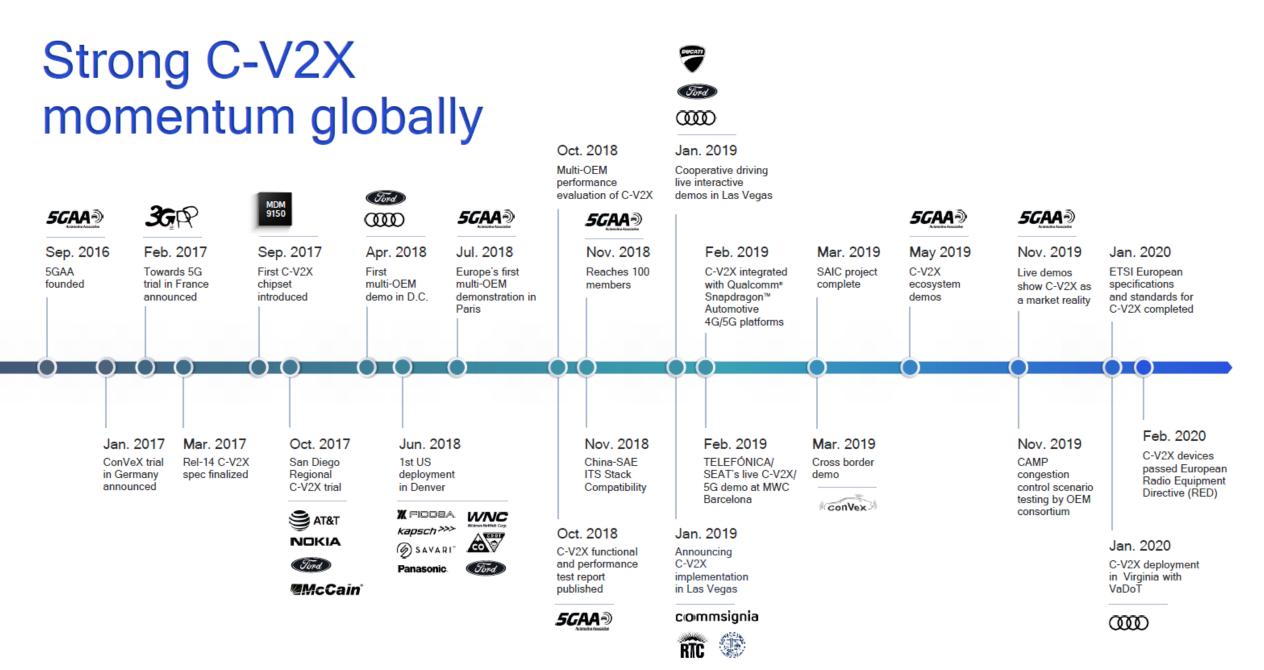
CAMP PSA BMW

PSA	Lear	SWARCO	Neusoft Read
BMW	Valeo	Commsignia	Simcom
Daimler	WNC	Genvict	Sasken,
SAIC	CMCC	Nebulalink	Thundersoft
Continental	AT&T	R&S	Telit
Bosch	NTT DoCoMo	Datang	Lacroix
.G	CMRI	Ficosa	And more
TE	McCain	Savari	

Quectel

Kapsch

Collaborating with key


ecosystem players

Ford

5GAA Automotive Association

8 of the top 9 global automakers

- Top automotive Tier 1 suppliers
- · 9 of the top 10 global telecommunications companies
- Top 3 global smartphone manufacturers
- Top global semiconductor companies
- Top 5 global wireless infrastructure companies
- Top global test and measurement companies and certification entities
- Global representation from Europe, China, US, Japan, Korea, and elsewhere

