=
>

ERICSSON

LcAN & AGILE
DeVELOPMENT

Tibor Csondes, Honorary Associate Professor

csondes@tmit.bome.hu

AGILI

Feature Driven
Development

___ile

lethodologies

w

Xtreme
Programming

HTTPR://AGILEMANIFESTO.ORG/ISO/HU/

Kialtvany az agilis szoftverfejlesztésért

A szoftverfejlesztés hatékonyabb moédjat tarjuk fel sajat tevékenységiink és a masoknak nyjtott segitség utjan. E munka
eredményeképpen megtanultuk értékelni:

Az egyéneket €s a személyes kommunikaciot a médszertanokkal és eszkozokkel szemben
A mukodo szoftvert az atfogd dokumentéacioval szemben

A megrendelovel torténd egyiittmikodest a szerzédéses egyeztetéssel szemben
A valtozas ranti készséget a tervek szolgai kovetésével szemben

Azaz, annak ellenére, hogy a jobb oldalon szerepld tételek is értéklkel birnak, mi tébbre tartjuk a bal oldalon feltiintetetteket.

Kent Beck James Grenning Robert C. Martin
Mike Beedle Jim Highsmith Steve Mellor
Arte van Bennekum Andrew Hunt Ken Schwaber
Alistair Cockburn Ron Jeffries Jeff Sutherland
Ward Cunningham Jon Kemn Dave Thomas
Martin Fowler Brian Marick

“ PRINCIPLES OF THE AGILE
MANIFESTO (1/2)

Our highest priority is to satisfy the customer through early and continuous
delivery of valuable software.

Welcome changing requirements, even late in development. Agile
processes harness change for the customer's competitive advantage.

Deliver working software frequently, from a couple of weeks to a couple of
months, with a preference to the shorter timescale.

Business people and developers must work together daily throughout the
project.

Build projects around motivated individuals. Give them the environment and
support they need, and trust them to get the job done.

The most efficient and effective method of conveying information to and
within a development team is face-to-face conversation.

http://www.agilemanifesto.org/principles.html

Presenter
Presentation Notes
The manifesto also includes twelve principles. Here they are.
12 principles: they are each self-explanatory.

OF THe AGILE

PRINCIPLES
ESTO (2/2)

MANIF

Working software is the primary measure of progress.
Agile processes promote sustainable development. The sponsors, developers
and users should be able to maintain a constant pace indefinitely.

Continuous attention to technical excellence and good design enhances agility.

Simplicity--the art of maximizing the amount of work not done--is essential.
(YAGNI — You Aren’t Gonna Need It.)

The best architectures, requirements, and designs emerge from self-organizing
teams.

At regular intervals, the team reflects on how to become more effective, then
tunes and adjusts its behavior accordingly.

http://www.agilemanifesto.org/principles.html

AGILE APPROACHES

Agile methods are not unified, there is
diversity

Each method implements the Agile

Manifesto differently

=== \We will consider

e Extreme Programming (XP)
e Scrum
e Kanban

There are common practices across

these methods, which we’ll examine

HOW IT ALL FITS TOGETHER

Defer

e ——— Optimize the whole
commitment

_Eliminate waste
Respect people

. Focuson
learning

Deliver fast /
Limit work

_ o to capacity /
Build quality in ___ _ = Pull scheduling

automation/TDD

©

Crisp Henrik Kniberg

Presenter
Presentation Notes
Speakers notes:
It begins with Lean as a concept, optimizing the whole vaule flow
With the Agile concept we focus on cooperation to eliminate waste
Scrum is one typical method that can be used to plan and keep good control of what to do and who is doing what
XP is yet another method, but in this case a specific one for SW development (eXtreme Programming)

EXTREME PROGRAMMING
(XP)

Formulated in 1999 by Kent Beck, Ward
Cunningham and Ron Jeffries

Agile software development methodology (others:
Scrum, DSDM, Kanban)

Developed in reaction to high ceremony
methodologies

ceXAMPLE OF PRINCIPLES FROM XP
(EXTREME PROGRAMMING)

> Test Driven Development

> Continuous Integration

> Collective Code Ownership

Run tests see
new failure

/

Write some Run tests see
code all pass

Presenter
Presentation Notes
Speakers notes:
Collective code ownership doesn’t mean that everyone is supposed to do everything. It means that we try learn more from each other to become less vulnerable so e g Charles can keep on working with a design task even if Edith is on sick leave on a Monday.

XP: WHY?

s Previously:

» Get all the requirements before starting
design

* Freeze the requirements before starting
development
» Resist changes: they will lengthen schedule

e Build a change control process to ensure
that proposed changes are looked at
carefully and no change is made without
Intense scrutiny

 Deliver a product that is obsolete on release

XP: eEMBRACE CHANGE

Recognize that:

 All requirements will not be known at the beginning
 Requirements will change

Use tools to accommodate change as a natural process

Do the simplest thing that could possibly work and

refactor mercilessly

Emphasize values and principles rather than process

XP PRACTICES

XP Practices Whola

Collective ~ Coding
Ownership Test-Driven Standard

r/f 7 Development \ '\.\
Customer (Pair Rafactoria Planning
Tesls \H Programming 9 J Grame

\ Simple / 5u5’laiﬁlab\a

Dt—ﬁlgﬂ

(_on‘hnuous

ln’le-gr'a’non Pace

T Metaphor g

Small

R&l&as% v K0 granmmitig. com

(Source: http://www.xprogramming.com/xpmag/whatisxp.htm)

THe XP TEAM

How to design and Where defects are Why the software is
program the likely to hide Important

software . testers « product manager

» programmers, designers,
and architects

The rules the How the software How the user
software should should behave Interface should look

follow * interaction designers » graphic designers
» domain experts

How to interact with Where to improve
the rest of the work habits

company « coach
e project manager

XP PRACTICES: WHOLE
TEAM

All contributors to an XP project are one team

Must include a business representative: the ‘Customer’

* Provides requirements
 Sets priorities
» Steers project

Team members are programmers, testers, analysts, coach, manager

Best XP teams have no specialists

XP TEAM SIZE

Assume teams with 4 to 10

programmers (5 to 20 total team
members).

Applying the staffing guidelines
to a team of 6 programmers
produces a team that also
Includes 4 customers, 1 tester,
and a project manager, for a
total team size of 12 people.

rULL-TIME TEAM MeMWMB

M
7
N

All the team members should sit with the team
full-time and give the project their complete
attention.

This particularly applies to customers, who are
often surprised by the level of involvement XP
requires of them.

Presenter
Presentation Notes
Some organizations like to assign people to multiple projects simultaneously. This fractional assignment is particularly common in matrix-managed organizations. (If team members have two managers, one for their project and one for their function, you are probably in a matrixed organization.)

XP PRACTICES: PLANNING
GAME

Two key questions in software development:

* Predict what will be accomplished by the due date
e Determine what to do next

Need is to steer the project

Exact prediction (which Is difficult) iIs not necessary

XP PRACTICES: PLANNING
GAME

XP Release Planning

o Customer presents required features
 Programmers estimate difficulty
e Imprecise but revised regularly

XP lteration Planning

* Two week iterations

o Customer presents features required
 Programmers break features down into tasks
 Team members sign up for tasks

 Running software at end of each iteration

XP PRACTICES:
CUSTOMER TESTS

The Customer defines one or more automated
acceptance tests for a feature

Team builds these tests to verify that a feature Is
Implemented correctly

Once the test runs, the team ensures that it keeps
running correctly thereafter

System always improves, never backslides

XP PRACTICES: SMALL

RELEASES

Team releases running, tested software every
iteration

Releases are small and functional

The Customer can evaluate or In turn, release to end
users, and provide feedback

Important thing Is that the software is visible and
given to the Customer at the end of every iteration

XP PRACTICES: SIMPLE
DeSIGN

Build software to a simple design

Through programmer testing and design improvement, keep the
software simple and the design suited to current functionality

Not a one-time thing nor an up-front thing

Design steps in release planning and iteration planning

Teams design and revise design through refactoring, through the
course of the project

XP PRACTICES:
INFORMATIVE WORKSPACE

Your workspace is An informative
the cockpit of your workspace
development broadcasts It's iImprove
effort: create an Information into stakeholder trust
Informative the room (eq.
workspace radiators)

Presenter
Presentation Notes
Your workspace is the cockpit of your development effort. Just as a pilot surrounds himself with information necessary to fly a plane, arrange your workspace with information necessary to steer your project: create an informative workspace.
An informative workspace broadcasts information into the room. When people take a break, they will sometimes wander over and stare at the information surrounding them. Sometimes, that brief zoneout will result in an aha moment of discovery.
An informative workspace also allows people to sense the state of the project just by walking into the room. It conveys status information without interrupting team members and helps improve stakeholder trust.

XP PRACTICES: PAIR
PROGRAMMING

All production software Is built by two programmers, sitting
side by side, at the same machine

All production code is therefore reviewed by at least one other
programmer

Research into pair programming shows that pairing produces
better code In the same time as programmers working singly

Pairing also communicates knowledge throughout the team

XP PRACTICES: TeST-
DRIVEN DeEVELOPMENT

Teams practice TDD by working in short cycles of adding a
test, and then making it work

Easy to produce code with 100 percent test coverage

These programmer tests or unit tests are all collected together

Each time a pair releases code to the repository, every test
must run correctly

XP PRACTICES: DeSIGN
IMPROVEMENT

Continuous design improvement process

called ‘refactoring’:

 Removal of duplication
* Increase cohesion
e Reduce coupling

Refactoring is supported by comprehensive

testing--customer tests and programmer tests

B
XP PRACTICES: CONTINUOUS
INTEGRATION

Teams keep the system fully integrated at all times

Dally, or multiple times a day builds
Avoid ‘integration hell’
Avoid code freezes

10 minutes build

Presenter
Presentation Notes
'integration hell', e.g., integrating a big chunk of code changes at the last minute which results in conflicts, and can take more time to resolve as compared to the time required to make original changes.

XP PRACTICES: COLLEC
CODe OWNERSHIP

j

]
-
<
M

Any pair of programmers can improve any code at any time

No ‘secure workspaces'’

All code gets the benefit of many people’s attention

Avoid duplication

Programmer tests catch mistakes

Pair with expert when working on unfamiliar code

XP PRACTICES: CODING
STANDARD

Use common coding standard

All code in the system must look as though written by an
individual

Code must look familiar, to support collective code ownership

XP PRACTICES:
SUSTAINABLE PACE

Team will produce high quality product when not overly
exerted

Avoid overtime, maintain 40 hour weeks

‘Death march’ projects are unproductive and do not produce
guality software

Work at a pace that can be sustained indefinitely

Presenter
Presentation Notes
In project management, a death march is a project where the members feel it is destined to fail, or requires a stretch of unsustainable overwork. The general feel of the project reflects that of an actual death march because the members of the project are forced to continue the project by their superiors against their better judgment.

CHARACT

—
SUCCESS

Very rapid
development

Amazi
erro

=RISTICS OF

UL XP PROJ

Exceptional
responsiveness to
user and customer

change requests

High customer
satisfaction

System begins

ngly low
I rates

returning value to
customers very

early in the process

XP VALUES

Communication Simplicity

Feedback Courage

XP VALUES:
COMMUNICATION

Poor communication in software teams is one of the root
causes of failure of a project

Stress on good communication between all stakeholders--
customers, team members, project managers

Customer representative always on site

Paired programming

XP VALUES: SIMPLICITY

‘Do the Simplest Thing That Could Possibly

Work’

* Implement a new capability in the simplest possible way

o Refactor the system to be the simplest possible code with
the current feature set

‘You Aren’t Going to Need It’ (YAGNI)

 Never implement a feature you don’'t need now

B
YOU AREN'T GONNA NeeD IT
(YAGNI)

Important aspect of simple design: avoid

speculative coding.

 Whenever you're tempted to add something to your
design, ask yourself if it supports the stories and features
you’re currently delivering. If not, well... you aren’t gonna
need it. Your design could change. Your customers’ minds
could change.

Similarly, remove code that’s no longer In use.

* You'll make the design smaller, simpler, and easier to
understand. If you need it again in the future, you can
always get it out of version control. For now, it's a
maintenance burden you don’t need.

Presenter
Presentation Notes
Important aspect of simple design: avoid speculative coding. Whenever you’re tempted to add something to your design, ask yourself if it supports the stories and features you’re currently delivering. If not, well... you aren’t gonna need it. Your design could change. Your customers’ minds could change.
Similarly, remove code that’s no longer in use. You’ll make the design smaller, simpler, and easier to understand. If you need it again in the future, you can always get it out of version control. For now, it’s a maintenance burden you don’t need.
We do this because excess code makes change difficult. Speculative design, added to make specific changes easy, often turns out to be wrong in some way, which actually makes changes more difficult. It’s usually easier to add to a design than to fix a design that’s wrong. The incorrect design has code that depends on it, sometimes locking bad decisions in place.

XP VALUES: FEeDBACK

Always a running system that delivers information
about itself in a reliable way

The system and the code provides feedback on
the state of development

‘ Catalyst for change and an indicator of progress

XP VALUES: COURAGE

Projects are
people-centric

Ingenuity of people
and not any
process that

causes a project to

succeed

XP CRITICISM

Unrealistic--
programmer
centric, not
business focused

Detailed
specifications are
not written

Design after
testing

12 practices are
too
Interdependent

Constant Customer
refactoring availability

XP THOUGHTS

The best design is the code.

Testing is good. Write tests before code. Code is complete when it passes
tests.

Simple code is better. Write only code that is needed. Reduce complexity

and duplication.

Keep code simple. Refactor.

Keep iterations short. Constant feedback.

COMMON XP
MISCONCEPTIONS

No written design documentation

* Truth: no formal standards for how much or what kind of
docs are needed.

 Truth: minimal explicit, up-front design; design is an
explicit part of every activity through every day.

e Truth: although XP does try to work with the natural
tendencies of developers, it requires great discipline and
consistency.

MORE MISCONCEPTIONS

XP Is just legitimized hacking

 Truth: XP has extremely high quality standards
throughout the process

e Unfortunate truth: XP Is sometimes used as an
excuse for sloppy development

XP Is the one, true way to build software

o Truth: it seems to be a sweet spot for certain kinds
of projects

XP SUMMARY (BY ISTQB)

Values:

e communication, simplicity, feedback, courage, respect

Principles:

* humanity, economics, mutual benefit, self-similarity, improvement,
diversity, reflection, flow, opportunity, redundancy, failure, quality, baby
steps, accepted responsibility

Primary practices:

e sit together, whole team, informative workspace (radiators), energized
work, pair programming, stories, weekly cycle, quarterly cycle, slack (do
not use 100% allocation), 10 minute build, continuous integration, test
first programming, incremental design

Many other agile practices use some aspects of XP

HOW IT ALL FITS TOGETHER

Defer

e ——— Optimize the whole
commitment

_Eliminate waste
Respect people

. Focuson
learning

Deliver fast /
Limit work

_ o to capacity /
Build quality in ___ _ = Pull scheduling

automation/TDD

©

Crisp Henrik Kniberg

Presenter
Presentation Notes
Speakers notes:
It begins with Lean as a concept, optimizing the whole vaule flow
With the Agile concept we focus on cooperation to eliminate waste
Scrum is one typical method that can be used to plan and keep good control of what to do and who is doing what
XP is yet another method, but in this case a specific one for SW development (eXtreme Programming)

THE SCRUM FRAMEWORK

DaIlLY SCRUM
MEETING

' ™
24 Hours

POTENTIALLY

IannunT] [EPRINT] SHIPPABLE
BackLOG BACKLOG PrROoDUCT
INCREMENT

2-4 WEEKS

CoPvrRIGHT & 2005, MOuNTAIN EOAT SOFTWARE

Presenter
Presentation Notes
Speakers notes:
Process description of Scrum as one example of a method that can be used within Lean and Agile product development

ROLES

Product Owner

Presenter
Presentation Notes
Speakers notes:
Product owner
Represents the interests of all the stakeholders
ROI objectives
Prioritizes the product backlog
Team
Cross-functional
Self-managing
Self-organizing
Coach
Coaches the team in the Agile and Lean process
Challenges the team for continuous improvement
Teaching the way we do Agile & Lean
Ensures the following of Agile & Lean rules and practices

USER STORIES AND ESTIMATION (1)

Describe requirements in product backlog

Syntax: As <role> | want to <requirement>
because <business reason>

Example:

« As a customer | want to reserve movie tickets with my
mobile

e Because | want to be sure that | have a seat when | arrive
to the theater

Presenter
Presentation Notes
Speakers notes:
User stories are a way of describing customer requirements without having to create formalized requirement documents and without performing administrative tasks related to maintaining them.
A user story could describe a small feature but normally a feature is divided into several user stories.

USER STORIES AND ESTIMATION (2)

Planning poker method

* Product owner (or a
stakeholder with the best
knowledge) explains the story

e Team members estimate the
story independently and select
a card

 They show the cards
simultaneously

* Explain why estimates differ
 End or go back to step 2

Presenter
Presentation Notes
Speakers notes:

This is an exercise which will focus on the ability to cooperate in a Team

.

SPRINT PLANNING

Time-box (eg. 2 hours)

e 1st - 1 hours max. for team to select Product
Backlog and sets goal with Product Owner

e 2nd - 1 hours max. for team to define Sprint
Backlog to build functionality

Attendees

* Product owner, team and Scrum Master

Product owner must prepare the Product
Backlog prior to the meeting

* Product owner decides what the product backlog
constitutes

Output: Sprint backlog

» Tasks, task estimates, task assignments

Team Product
Capacity Backlog
L

Analyze, evaluate and select
Product Backlog for Sprint

1]

Estimated
Work

g

Decompose to specifications
and tasks, estimate tasks

| |

Budgeted
Work in
Tasks

Presenter
Presentation Notes
Speakers notes:

The very first time a Team work like this is set up it might take an hour or two.

This example could be a SW Team with a “normal size” of 6-8 members, (depending on the product, its maturity and complexity) that after implementation of Agile and Lean wow now can be done within a few minutes, or significantly shorter planning time.

DeFINITION TOF DONE (DOD)

10 POINT CHECKLIS

Code produced (all ‘to do’ items in code completed)

Code commented, checked in and run against current version in source control

Peer reviewed (or produced with pair programming) and meeting development standards
Builds without errors

Unit tests written and passing

Deployed to system test environment and passed system tests

Passed UAT (User Acceptance Testing) and signed off as meeting requirements

Any build/deployment/configuration changes implemented/documented/communicated
Relevant documentation/diagrams produced and/or updated

Remaining hours for task set to zero and task closed

- See more at: http://www.allaboutagile.com/definition-of-done-10-point-checklist/#sthash.8rcJSONz.dpuf

TRANSPARENCY - TASK BOARD

NoT
CHECKED ©

CHECKED OUT| DoNe! -0 SPEINT GOAL: SETA-€EADY PELEASE!

Presenter
Presentation Notes
Picture of task board: Kniberg, Henrik 2006. Scrum and XP from the Trenches. <http://www.crisp.se/henrik.kniberg/ScrumAndXpFromTheTrenches.pdf>
Speakers notes:
Normally the team has their Daily Scrum standing at this task board. A Daily Scrum is a:
-Daily 15 minute work meeting;
-Same place and time every day;
- Where everyone answers three questions;
What have you done since last meeting?
What will you do before next meeting?
What is in your way?
-In order to find Impediments and make Decisions

The definition of Done is very important to agree upon, settle this within the Team

RETROSPECTIVES

Set the stage

» Focus for this retrospective

Gather data

e Ground it in facts, not opinions

Generate insights

* Observe patterns

Decide what to do

» Move from discussion to action

\:)

3

&, o
What mabes
What mafes me oad?
| me happy? |
l’ ;
e
C&y/
”, >)
What ideas Whe

Presenter
Presentation Notes
Speakers notes:
Point out that retrospectives are for the team and should thereby be run by he team, not a manager (the team should even decide if the manager is allowed to participate).
The goal is to find impediments for better ways of working. Earlier, before Agile ways of working, this was normally done once or twice a day. Now, we want to do this at the end of every sprint.

SCRUM, SUMMARY (BY ISTQB)

Practises

o Sprint (Iteration)
e Product increment
* Products backlog

« Definition of Done (DoD) — exit
criteria

e Timeboxing — fix duration for
iteration, fix daily meetings

e Transparency

No specific software

development techniques

Roles

e Scrum Master (SM) ensures
practices and rules are
implemented, followed — process
focused scrum theory

* Product Owner (PO) represents
the customer and owns product
backlog — he/she can change
product backlog any time

* Development Team (3-9, self-
organized) develops and tests
product

Scrum does not prescribe

testing approach

EH#R - KANBAN CARDS LIMIT EXCESS WORK IN PROGRES

W

&tk — kanban literally means “visual
card,” “signboard,” or “billboard.”

Toyota originally used Kanban cards to
limit the amount of inventory tied up in
“work in progress” on a manufacturing
floor

kanban cards act as a form of
“currency” representing how WIP is
allowed in a system.

Kanban is an emerging process
framework that is growing in popularity
since it was first discussed at Agile 2007
in Washington D.C.

KANBAN BASIC RULES

study j implement j integrate j test done

backlog
. . 2 4 1 3
Visualize the
workflow EE E E B B —_

PG — e

-- p—

Limit Work In Lead time until done
Progress (WIP) o

—

Cycle time of impl.

Measure and

optimize lead
time

PROC

More prescriptive

|||
o2

N

More adaptive

<€ @

RUP
(120+)

* Architecture Reviewer * Business usecase realization
+ Bz Designer + Business use-casemode!
+ Business-Model Revi + Businesswision
. iess-Process Analyst + Change reguest
+ Capsule Designer + Configuration audit fndings:
+ Change Cortrol Manager + Configuration management plan
v Code Reviewer * Data model
+ Configuraticn Manager + Degicyment model
v Course * Degloyment
+ Database Desigrer + Design guideines
+ DeploymentManager + Deesign madel
+ Design Reviewer caze
+ Dresigner Development-crganization
+ faraphic Artist assessment
I + Encrusersupport matsirla
. * Glossary
+ Process Enginesr + Implementation model
+ Project Manager + Installationartifacts
+ Propact Beviswer + Inkagration build plans
+ Requirements Reviewer + lasueslist
* Requirements Specifier + Hesation assessment
+ Software Architect + Ieration plan
. - - Manal styleguide
+ System Administrator . nq guicelines
+ Cystem Analyst + Quality szzuranca plan
+ Technical Wiiber * Referencearchitecturs
+ Testhnahst Release notes
+ TestDesigner Reguirements abirfes
* TestManager Regquirements
+ Tester management plan
* Tool Spacialist * Review pecord
v User-Interface Designer * Risklist
+ Archtecturalanabss + Riskmanagament plan
+ MssessViability of architectural + Softwarea
proch-ch-comcept document
+ Capsuie design Scfware development
+ (lass design plan
+ Constructarchisctural procf-of- + Schware requirements
specification
* Database design * Stakeholder requests
+ Describe dstribution + Stathe assessment
+ Descrine the run-time architecture: * Supplementary business
+ Design test packages and clazses zpesification
* Drevelop design guidelines . ?.ppl:mﬂm specication
. min, s . ization assessment
T e D
+ Identify design mechanisms + Testcases
+ Incerporate design ¢ Testenvircnment configuration
+ Pricritize use cases + Testevaluation summary
Reviewthe archibecture + Test quidelines
Revizwithe design + Testidess st
the imglementation v+ Testinterface specification
model + Testplan
* Subsystem design ¢ Tastonite
+ Use-caseanalyss + Toolguidelines
+ Use-cazsdesign + Training materials
+ Anghsmodel ¢ Usecazemodel
- et 5
+ Billof materials + Usecasemodeling guicelines
+ Basivess architecture dooument + Usecasereaization
+ Business case ¢ Use-casestoryioard
+ Business glossary ¢ Usarinterface guidslines
+ Buiess medeling guidsine . protobype
+ Business ﬂ;d:nw-dd + Mision
v Business * Work order
+ Business usscase * Worklcad analysis model

Scrum

(9)

Serum Master

Product Owmer

Team

Sorint daraing mesking
Daily Soum

Sprink review

Procuct backiogt

Sprint backlog
BLimdoan chart

- >

Kanban Do Whatever
(3) (0)
e |

VISUALIZ

c THe

WORKFLOW

Customer
g

Product management Systems

Design & FT

System 1&V

Sales

\\//

Management team

Customer

VISUALIZE THE
WORKFLOW

Planned (x)] Design (2) Test (6)

us X-] =
==

Integrate (3)] Done

Improvement

LIMITING WORK'IN
PROGRESS

20% time is lost to context switching per task, so fewer tasks

means less time lost (from Gerald Weinberg, Quality Software
Management: Systems Thinking)

100
80 :

60 -

40 | I

20 IR BB | i

0 IIT.I el e
1 2 3 E 5

Number of Simultaneous Projects

Percent

x Working Time Available Per Project
M Loss to Context Switching

LIMITING WORK IN
PROGRESS

Push Process

LIMITING WORK'IN
PROGRESS

New work items can only be pulled into a state if there is

capacity under the WIP limit.

Work Items | (3)Step 1 (2) Step2 |... | "SiEnn
Il n I In MNE

Queue | Process | Queue | Process Queue | Process

\ —— | [-
mi)| B

4 | [

— i

[|

i [

METRICS

= Metrics are a tool for everybody

The team is responsible for its metrics

Metrics allow for continuous improvement

Manage quantitatively and objectively using

only a few simple metrics

e Quality

 Work in Process
 Lead / Cycle time
 Waste / Efficiency
 Throughput

LITTLE'S LAW FOR
QUEUING THeORY

The only way to reduce cycle
time is by either reducing the
WIP, or improving the average
completion rate.

Total Cycle Time = Number of

Things in Progress / Average
Completion Rate

« Achieving both is desirable.

e Limiting WIP is easier to
Implement by comparison.

USE CUMULATIVE FLOW DIAGRAMS TO VISUALIZE WORK IN
PROGRESS

240
220
200
180
160
140
120
100

Features

Time

@ Inventory m Started O Designed O Coded m Complete

VALUE STREAM MAPPING

Value Stream for Product XYZ

Wait.
Selection

Analysis &
Preparation

Queue Develop. Queue Verification Queue Deploy

LT

Waiting in Waiting in the Waiting for Waiting for
the Product Iteration verification release
Backlog Backlog and homologation
T1 T2 13 T4 15 T6 17 T8

TValue* 100
Eficiency (%) =

TValue + TWaste

PRIORITIZATION MeTHOD

> Business value?

\\

> Cost of delay classification

Expedite: critical, and immediate cost of delay; can
exceed other kanban limit (bumps other work) 15t
priority

Fixed date: cost of delay goes up significantly after
deadline; 2" priority

Accelerating: cost of delay goes up increasingly
over time; 3" priority

danEN
\

Normal: Cost of delay linear over time; 4 priority

SCALING = SWIM LANES

Not
started started done

Team “A”

Team “B”

Team “X”

ONe DAY IN KANBAN

LAND

Afew days later...

Develo
Backlog Selected 3 P Deploy

Ongoing | Done 1

E’“'@_'I' %m |x€%

: (Don't you miss the old da

M or H. Definitely M|

Big-bang releases?
Mo, H! Hmmmmm. No wait,

All-night Integration hell?

! C
'|'5?

MT B or Hor st or B9 17 sy

ArTeR A KANBAN
IMPLEMENTATION...

“Nothing else In their world should have
changed. Job descriptions are the same.
Activities are the same. Handoffs are the
same. Artifacts are the same. Their process

hasn't changed other than you are asking
them to accept an WIP limit and to pull work
rather than receive It in a push fashion”
David Anderson.

> http:/Iwww.limitedwipsociety.orqg/
> http:/Iwww.crisp.se/henrik. kniberg/kanban-vs-scrum.pdf

http://www.limitedwipsociety.org/
http://www.crisp.se/henrik.kniberg/kanban-vs-scrum.pdf

KANBAN SUMMARY (BY ISTQB)

Optimize flow of work in value-added chain

Instruments:

e Kanban board
» Work-in-progress limit
e Lead time

Both Kanban and Scrum provide status transparency and

backlogs, but:

e Iteration is optional in Kanban
e |tems can be delivered one at a time or in a release
» Timeboxing is optional

LEAN & AGILE
Ag |l e & | ean (@O0 Yosunobu Kavaguch

Mashup @agustinvillena - @josephhurtado

Design
Patterns

Gang of Four, 1994

//_—-—r

The New New Produ

Development Game \
Takeuchi & Nonaka 1986
I
Japan’s Manufacturing Industry Extrermne
Programming
Toyota's Pt}*{odLlljction System Scrum 20,01{,\,”(BI{en:IBeck 1999
anpan T o bt ike Beedle
Taichi Ohro 578 Japanese Sutherland & Schwaber & Schwaber)
1988 English
Lean Software \ .
Development ™= > Ag | Ie
Mary & Tom Poppendieck 2003

/1 2009- Scrumban - Corey Ladas o™

Llean ——» Kanban #

David J. Anderson 2010
Eric Ries 2011

\ The Four Steps

Sta rtup to the Epiphany

Steven G. Blank 2005

DOCUMENTATION
SYSTeMS

Helps in generating on-line documentation or offline
reference manual from documented source files.

Combine source code with documentation and other
reference materials

Make it easier to keep the documentation and code in
sync

et Ve will see:

e Doxygen
e Javadoc
e T3DocC

DOXYGEN

Most useful tags:

* \file
e \author
e \brief

Source code documentation
generator tool, Doxygen is a
documentation system for C++,

C, Java, Objective-C, Python,
IDL (Corba and Microsoft
flavors), Fortran, VHDL, PHP,
C#, and to some extend D.

e \param
* \returns
 \todo (not used in assignments)

JAVADOC

Attach special comments, called
documentation comment (or doc
comment) to classes, fields, and

Use a tool, called javadoc, to
automatically generate HTML pages

methods. /** ... */ from source code.

Javadoc Tags: Special keyword
recognized by javadoc tool. Common
Tags:

* @author Author of the feature

e @version Current version number
* @since Since when

* @param Meaning of parameter
e @return Meaning of return value
* @throws Meaning of exception

e @see Link to other feature

T3D0C

TTCN-3 source code tagging

Standard: ETSI ES 201 873-10

Example

° /***************************************
** @desc XYZ ok
** Initialize to pre-trial defaults. **
% **
123

**/

sbe)
Jajo Ul peppaquy

(} @sne|2 aas) wJioy
notduwi ur pasn

suomujap
|eso] yusuodwor

SHEd [0NjU0D

sdnoig

sa|npoyy

sasen jse]

sdaisyy

ceNTATION

(lewsayxa pue
£-NOLL1) suopoung

saimeubig

saje|dwa]

SIUBISUOD

siedajnpoy

sadA)] pog

sadA] yusuodwon

SEUNT
E}E] painjanl)s

sadf] eyeq adung

TTCN-3 DOCU

TAGS

X x

x1

X1

X
! Preceding language elements of record, set, union or enumerated types only.

e

ar
ority
posae
rome

@rararen

10 iy

@excepticn
ric

@autho
gconfig
@remark
@return
gverdict
@version
NOTE:

@since
@status

amemb
@roegui
nt
gurl

ay
ar

	Lean & Agile Development
	Agile
	http://agilemanifesto.org/iso/hu/
	Principles of the Agile Manifesto (1/2)
	Principles of the Agile Manifesto (2/2)
	Agile Approaches
	Slide Number 7
	Extreme Programming (XP)
	EXAMPLe OF PRINCIPLES FROM XP �(EXTREME PROGRAMMING)
	XP: Why?
	XP: Embrace Change
	XP Practices
	The XP team
	XP Practices: Whole Team
	XP Team size
	Full-Time Team Members
	XP Practices: Planning Game
	XP Practices: Planning Game
	XP Practices: Customer Tests
	XP Practices: Small Releases
	XP Practices: Simple Design
	XP Practices: Informative Workspace
	XP Practices: Pair Programming
	XP Practices: Test-Driven Development
	XP Practices: Design Improvement
	XP Practices: Continuous Integration
	XP Practices: Collective Code Ownership
	XP Practices: Coding Standard
	XP Practices: Sustainable Pace
	Characteristics of Successful XP Projects
	XP Values
	XP Values: Communication
	XP Values: Simplicity
	You Aren’t Gonna Need It (YAGNI)
	XP Values: Feedback
	XP Values: Courage
	XP Criticism
	XP Thoughts
	Common XP Misconceptions
	More Misconceptions
	XP Summary (by ISTQB)
	Slide Number 45
	THE SCRUM FRAMEWORK
	ROLES
	USER STORIES AND ESTIMATION (1)
	USER STORIES AND ESTIMATION (2)
	Slide Number 50
	Definition of DONE (DoD) �10 Point Checklist
	TRANSPARENCY – TASK BOARD
	RETROSPECTIVES
	Scrum, Summary (by ISTQB)
	看板 – Kanban cards limit excess work in progress
	Kanban basic rules
	Processes
	Visualize the workflow
	Visualize the workflow
	Limiting Work In Progress
	Limiting Work In Progress
	Limiting Work In Progress
	metrics
	Little’s Law for Queuing Theory
	Use cumulative flow diagrams to visualize work in progress
	Value stream mapping
	Prioritization method
	Scaling – swim lanes
	One day in kanban land
	After a Kanban Implementation…
	sources
	Kanban Summary (by ISTQB)
	Lean & Agile
	Documentation systems
	Doxygen
	Javadoc
	T3doc
	TTCN-3 documentation tags

