AGILIS HALOZATI
SZOLGALTATAS-

redLesSZTeS

VITMMAO1

cLOADOK

> Adamis Gusztav
—adamis@tmit.bome.hu

> Csondes Tibor
— csondes@tmit.bme.hu

> Kovacs Gabor
— kovacsg@tmit.bme.hu

Agilis halozati szolgéltatasfejlesztés

' Tavkozlési és Médiainforn %

&~ C A [wwwimitbmehu pegl
E:" Alkalmazasok a Google Fordite mlntera:tlve European.., .Webkamary Karlowvy ... & Hotel Webcam Karl... & METEOPROG.HLU:Id.., ﬂ Forecast _| The Local - Sweden'... -: 1) Tech: Fantasztiku... '3. vasttvonalak listdja:.., Q! Meta-Object Facility... » [:I Tovébbi kdnyvjelzbk
Kezdélap | HU | EN | Bejelentkezés e
p — - rN TAVKOZLESI ES MEDIAINFORMATIKAI TANSZEK /
R E Budapesti Miiszaki és Gazdasagtudomanyi Egyetem - J(
MOEGYETEM 1782 Villamosmeérnoki és Informatikai Kar —

HALLGATOKNAK ~ ROLUNK OKTATAS KeF-l LABORCSOPORTOK ~ MEDIATAR

ATTEKINTES AZ OKTATASUNKROL

ALAPKEPZES (BSC) 3
MESTERKEPZES (M5C) 2
DOKTORI (PHD) KEPZES 3 .
ESEMENYEK
_______ KIFUTO KEPZESEK, ARCHIVUM 3
TANTARGYAINK TANTARGYKERESO

KOTELEZOEN VALASZTHATO TANTARGYAINK
SZABADON VALASZTHATO TANTARGYAINK
Raitad kiviil Robert Szabo és

* tovabbi 180 szemely kedveli ezt
Y % E,
BT A

Koveted: BME Tavkozlesi és
= Mediainformatik ai Tanszek

A BME KUTATO! ALKOTTAK MEG STEPHEN HAWKING
ONALLO LABOR TEMAKIIRASOK 2015 KULONLEGES GEPHANGJANAK MAGYAR VALTOZATAT!

f ~ 2015, tavaszi 6nlab és projekt labor
kiirasaink elérhetdk 17T,

A Mindenség elmélete cimi, 3 magyar
mozikhan most bemutatott film

PARTNEREINK
szinkronizalasi munkaiban vett részt a
BME TMIT csapata. -
ERICSSON Z A
AT A

antenna ORACLE

© MuNGARIA

BIG DATA” - ADATVEZERELT KULTURANK Uy EGY SZOFIVER KOLCSONZI STEPHEN HAWKING e
MOZGATGRUGGIA MAGYAR GEPI HANGJAT JUNIREL = = °1° Tiekom
-~ Interji Nagy Istvannal és Gaspar Stephen Hawking magyar gépi Nfcr (ﬁﬁ] gsas
Al s Csabaval, tanszékionk adatbanydsz MOZ' hangjat 2 BME TMIT-en fejlesztett Sm—
szakértdivel. (bme.hu) = Profivox-diad szovegfelolvaso ‘ & GRAVITY
MQNIQ szoftver segitségével készitettek. itk cor =

{mozimania.net)

wwtmit bme.hu/tantargysk

@ .

omlaffelafe]2] o] =]e]m

Y

Agilis haldzati szolgaltatasfejlesztés 3

REFERENCES

Aglle
Developmeni g

The Art of Agile Development,
James Shore & Shane Warden

O'REILLY" James Shore & Shane Warden

Foundations of

! - . N\ S ftw T t.
Foundations of Software Testing, ofuAY: e

Dorothy Graham, Erik van Veenendaal,
|Isabel Evans, Rex Black

ISTQB Certification

Dorothy Graham, Erik Van Veenendaal,
Isabel Evans, Rex Black

Certified Tester

Foundation Level Extension Syllabus
Agile Tester

Foundation Level Extension Syllabus,
e s e o Agile Tester, 2014, International
. re \ Sowftware Testing Quality Board (ISTQB))

Copyrant roce

Agilis halozati szolgaltatasfejlesztés

LcAN & AGILE
DeEVELOPMENT

Tibor Csondes, Honorary Associate Professor

csondes@tmit.bome.hu

How the customer explained it

ROBLE

How the Project Leader
understood it

How the Analyst designed it

How the Programmer wrofe it

How the Business Consultant
described it

How the project was
documented

What operations installed

How the customer was billed

How it was suppaorted

What the customer really
needed

Agilis haldzati szolgaltatasfejlesztés

INTRODUCTION

Software development has been changed

Need to follow fast changes requested by the customer

Most software development is a chaotic activity, often
characterized by the phrase "code and fix"

Requirement engineering getting more and more important!

Agilis haldzati szolgaltatasfejlesztés 7

:I. ; ""

CHANGE FROM THIS

Defined process control

Agilis haldzati szolgaltatasfejlesztés 8

TO THIS

R&D-based process

Agilis halozati szolgaltatasfejlesztés 9

SOFTWARE
DEVELOPMENT PROCESS

1970s

» Structured programming since 1969

1980s

 Structured systems analysis and design method (SSADM) from 1980
onwards

» Information Requirement Analysis/Soft systems methodology

1990s

» Object-oriented programming (OOP) developed in the early 1960s, and
became a dominant programming approach during the mid-1990s

» Rapid application development (RAD), since 1991
e Scrum, since 1995
» Extreme programming (XP), since 1999

2000s

» Agile Unified Process (AUP) maintained since 2005 by Scott Ambler

Agilis haldzati szolgaltatasfejlesztés 10

WHAT SPEED CAN LOOK LIKE

“New application from concept
to production: 2 months*

“Development & test
environments delivered within
30 minutes from initial order.*

“Every IT system fully
regression-tested by the end of
every iteration®

“Every IT system built & fully “A new car can be produced
tested at least twice a day* 20 hours after receiving the

. _ customer order.."
“An incident is fully resolved

within 24h and the long-term “A new fully automated stock
Improvement for addressing the trading strategy can be
root-causes handled within a Implemented every week.”
week.”

“A stock trade can be cleared
“All testing of integration In seconds.”
contracts is fully automated.*

Agilis hal6zati szolgaltatasfejlesztés 11

RAPID SOFTWARE
DeEVeELOPMENT

Rapid development
1l e [SI\VIST VAR g[olWAll - Businesses operate in a fast-changing

requirement and it is practically impossible to
Oft.en the most produce a set of stable software requirements
|mp0rtant » Software has to evolve quickly to reflect
requirement for changing business needs.

software systems

» Specification, design and implementation are
interleaved

Rapid software « System is developed as a series of versions with
development stakeholders involved in version evaluation

« User interfaces are often developed using an
IDE and graphical toolset.

Agilis haldzati szolgaltatasfejlesztés 12

SOFTWARE DEVELOPMENT
= (SDLC) MODEL

There are various software development approaches defined
and designed which are used/employed during development

process of software, these approaches are also referred as
“Software Development Process Models”

o Waterfall model

* V-model

* Incremental model
* [terative model

e etc.

Each process model follows a particular life cycle in order to

ensure success in process of software development.

Agilis haldzati szolgaltatasfejlesztés 13

- De IELOP/\/M:I\IT
= MODeL PHASES

There are following six phases in every

Software development life cycle model:

* Requirement gathering and analysis
e Design

* Implementation or coding

 Testing

* Deployment

 Maintenance

Agilis haldzati szolgaltatasfejlesztés 14

THe WATERFALL

PROCESS

> The traditional development process: Sequential design!

System

Requirements -\‘

Software

Requirements \

—

t Analysis

Program

Design \

Agilis haldzati szolgaltatasfejlesztés

Coding
Testing

|

Operations

15

WATERFALL MODEL

The Waterfall Model was first Process Model to be introduced. It is also
referred to as a linear-sequential life cycle model.

It is very simple to understand and use.

In a waterfall model, each phase must be completed fully before the next
phase can begin.

This type of model is basically used for the for the project which is small and
there are no uncertain requirements.

At the end of each phase, a review takes place to determine if the project is
on the right path and whether or not to continue or discard the project.

In this model the testing starts only after the development is complete. In
waterfall model phases do not overlap.

Agilis haldzati szolgaltatasfejlesztés 16

WATERFALL MODEL

* This model is simple and easy to understand and use.

* |t is easy to manage due to the rigidity of the model — each phase has
specific deliverables and a review process.

* In this model phases are processed and completed one at a time. Phases
do not overlap.

» Waterfall model works well for smaller projects where requirements are very
well understood.

Disadvantages of waterfall model:

* Once an application is in the testing stage, it is very difficult to go back and
change something that was not well-thought out in the concept stage.

No working software is produced until late during the life cycle.
High amounts of risk and uncertainty.

Not a good model for complex and object-oriented projects.
Poor model for long and ongoing projects.

Not suitable for the projects where requirements are at a moderate to high
risk of changing.

Agilis haldzati szolgaltatasfejlesztés 17

V-MODEL
(VERIFICATION AND VALIDATION)

need, wish, :
olicy, law Operational
= system

User Preparation | Acceptange
requirements n test execution
ShOW th e : Acceptance test
. . stem - Syst
relationships between e [T o
development phases
and test phases

The V-model is an

extension of the
waterfall model.

Global

. Preparation
design 2 . |

Integration test

Integration
test execution

Detailed
design

Component
test execution

Implementation

Agilis haldzati szolgaltatasfejlesztés 18

Time and project

completeness vs.
level of abstraction

V-MODEL

V-model means Verification and Validation model

Just like the waterfall model, the V-Shaped life cycle
IS a sequential path of execution of processes.

Each phase must be completed before the next
phase begins.

Testing of the product is planned in parallel with a
corresponding phase of development.

Agilis haldzati szolgaltatasfejlesztés 19

V-MODEL

Advantages of V-model:

« Simple and easy to use.

e Testing activities like planning, test designing happens well before
coding. This saves a lot of time. Hence higher chance of success over
the waterfall model.

* Proactive defect tracking — that is defects are found at early stage.
 Avoids the downward flow of the defects.
« Works well for small projects where requirements are easily understood.

Disadvantages of V-model:

 Very rigid and least flexible.

» Software is developed during the implementation phase, so no early
prototypes of the software are produced.

e If any changes happen in midway, then the test documents along with
requirement documents has to be updated.

Agilis haldzati szolgaltatasfejlesztés 20

INCREMENTAL MODEL

The whole requirement is divided into various builds. Multiple development
cycles take place here, making the life cycle a “multi-waterfall” cycle.

Cycles are divided up into smaller, more easily managed modules.

Each module passes through the requirements, design, implementation and
testing phases.

A working version of software is produced during the first module, so you
have working software early on during the software life cycle.

Each subsequent release of the module adds function to the previous
release.

The process continues till the complete system is achieved.

Agilis haldzati szolgaltatasfejlesztés 21

INCRE

cNTAL MODEL

iﬁ EF Eﬁ

Requirements

Build 1
» Design & Testing Implementation
Development
Build 2
Design & Testing Implementation
Development
Buld N
Design & Testing Implementation
Development
Incremental Life Cyele Model

Agilis halozati szolgaltatésfejlesztés

22

INCREMENTAL MODEL

Advantages of Incremental model:

» Generates working software quickly and early during the software life cycle.
* This model is more flexible — less costly to change scope and requirements.
It is easier to test and debug during a smaller iteration.

In this model customer can respond to each built.

Lowers initial delivery cost.

Easier to manage risk because risky pieces are identified and handled
during it'd iteration.

Disadvantages of Incremental model:

* Needs good planning and design.

* Needs a clear and complete definition of the whole system before it can be
broken down and built incrementally.

 Total cost is higher than waterfall.

Agilis haldzati szolgaltatasfejlesztés 23

WHEeEN TO USE THE
INCREMENTAL MODEL

This model can be used when the requirements of the complete system
are clearly defined and understood.

Major requirements must be defined; however, some details can evolve
with time.

There is a need to get a product to the market early.
A new technology is being used

Resources with needed skill set are not available

There are some high risk features and goals.

Agilis haldzati szolgaltatasfejlesztés 24

AGILE MODEL

Type of Incremental model

Software is developed in incremental, rapid cycles. This results in
small incremental releases with each release building on
previous functionality

Each release is thoroughly tested to ensure software guality is
maintained

It is used for time critical applications. Extreme Programming
(XP) is currently one of the most well known agile development
life cycle model

Agilis haldzati szolgaltatasfejlesztés 25

cL

MOD

AGIL

Kickoff

7| /x
m_ > @¢
x_ (T ./
L
I
\Lm N
mm o™ 7..__ —>
Fm.-m nd

Pall fx
i - -
ﬁ;m.m.h\

Deployment Deployment

Optional

Deployment

Optional

Optional

26

Agilis halozati szolgéltatasfejlesztés

ADVANTAGES OF AGILE
MODEL

Customer satisfaction by rapid, continuous delivery of useful software.

People and interactions are emphasized rather than process and tools. Customers, developers
and testers constantly interact with each other.

Working software is delivered frequently (weeks rather than months).

Face-to-face conversation is the best form of communication.

Close, daily cooperation between business people and developers.

Continuous attention to technical excellence and good design.

Regular adaptation to changing circumstances.

Even late changes in requirements are welcome

Agilis haldzati szolgaltatasfejlesztés 27

DISADVANTAGES OF
AGILE MODEL

In case of some software deliverables, especially the large ones, it
IS difficult to assess the effort required at the beginning of the
software development life cycle.

There is lack of emphasis on necessary designing and
documentation.

The project can easily get taken off track if the customer
representative is not clear what final outcome that they want.

Only senior programmers are capable of taking the kind of decisions
required during the development process. Hence it has no place for
newbie programmers, unless combined with experienced resources.

Agilis haldzati szolgaltatasfejlesztés 28

WHEeN TO USE AGILE
MODEL

When new changes are needed to be implemented.

To implement a new feature the developers need to lose only the

work of a few days, or even only hours, to roll back and implement
It.

Unlike the waterfall model in agile model very limited planning is
required to get started with the project.

Both system developers and stakeholders alike, find they also get
more freedom of time and options than if the software was
developed in a more rigid sequential way.

Agilis haldzati szolgaltatasfejlesztés

29

ITERATIVE LIF

MODEeL

:. i e r'. -I-
_.il-,.....-d-l'.
“'! ':'nl:ll:l-!_ 1
||

.-'-I '._:|

!]
-r-:. \—z
'

Design g % Design 4

Implement Implement 4
|

Analysis g Analysis 4

Agilis halozati szolgaltatésfejlesztés

Ha

Eﬁ
% Design

Imnplemeant

Analysis
30

ITERATIVE LIFE CYCLE
MODEL

Does not attempt to start with a full specification of
requirements

Instead, development begins by specifying and

Implementing just part of the software, which can then
be reviewed in order to identify further requirements

This process is then repeated, producing a new
version of the software for each cycle of the model

Agilis haldzati szolgaltatasfejlesztés 31

ADVANTAGES OF
ITERATIVE MODEL

In iterative model we can only create a high-level design of the
application before we actually begin to build the product.

In iterative model we are building and improving the product
step by step.

In iterative model we can get the reliable user feedback.

In iterative model less time is spent on documenting and more
time Is given for designing.

Agilis haldzati szolgaltatasfejlesztés 32

DISADVANTAGES OF
ITERATIVE MODEL

Each phase of an iteration is rigid with no
overlaps

Costly system architecture or design issues
may arise because not all requirements are
gathered up front for the entire lifecycle

Agilis haldzati szolgaltatasfejlesztés 33

WHEN TO USe ITERATIVE
MODEL

When the project is big.

Major requirements must be defined;
however, some details can evolve with
time.

Agilis haldzati szolgaltatasfejlesztés 34

INCREMENTAL VS.
ITERATIVE

Incremental

Agilis haldzati szolgaltatasfejlesztés

35

LeAN

> Lean philosophy regards everything not adding value to the
customer as waste

Agilis halozati szolgaltatésfejlesztés 36

1999

++ Enterprise-level Lean

multi-company value
l ‘ stream optimizations
C) 1997 . Enterprise-level Lean Thinking
Lean roll-out published

19908 . v ean’ application to
non-automotive

1990 & MIT International Motor

/ Vehicle Research program
s 1985-:- US auto industry crisis ;
Mid 1980s Dr. Jim Womack, Research
Director
Early + Japanese auto makers
1980s emerge as quality leaders
1978 + Second oil shock
1970°s .. Toyota Production System
b . (TPS) developed in Japan by
1950’s Taiichi Ohno
Lean developed in a Manufacturing background
1945 + Mass production thrives
/
1927 + Ford opens River
Rouge complex
1913 -+ First automobile assembly

line at Highland Park

1850 + Eli Whitney builds
muskets with
interchangeable parts

1750 <+ Industrial Revolution
begins mass production

Pre- f i
: + Cottage industries,
1700°s crafts, and guilds

Dates back to Mass Production days

Agilis haldzati szolgaltatasfejlesztés 37

PRINCIPLES OF LEAN

1. Eliminate Waste

2. Build Quality In

3. Create Knowledge
4. Defer Commitment

5. Deliver Fast

6. Respect People

7. Optimize the Whole

Agilis haldzati szolgaltatasfejlesztés 38

-

cLIMINATE WASTE
What is waste in software?

Any activity or product that does not provide value to customers — anything a customer would not pay for

Agilis haldzati szolgaltatasfejlesztés 39

/ WASTES IN SW
DeEVeELOPMENT

PR .

Extra Processes Extra features

Partially
done work Task switching

Motion and Waiting &
handover Delays

Agilis haldzati szolgaltatasfejlesztés 40

failblog.org

SUILD QUALITY IN

Cost of fixing a shipped product is much higher then fixing a product that is being build
Think how to test before starting

Agilis halozati szolgéltatasfejlesztés 41

" arlaiid”
i 3 -
L P T

L

& oavi F @
CREATE KNOWLEDGE

Amplify learning
Share knowledge gained with the whole team

Agilis halozati szolgaltatésfejlesztés 42

e - b

v

q‘-
oo

-

DEFER COMMITMENT

Decide as late as possible
*Keep your options open up to the last responsible minute
«Wait until you have better information to make the decision

*Be flexible to react to the changes that will surely happen in the market
and in the technology

Agilis haldzati szolgaltatasfejlesztés 43

DeLIVER AS FAST AS POSSiBLE

Deliver quickly to maximize return on investment, reduce risk, and
get feedback from real customers and users

Agilis haldzati szolgaltatasfejlesztés 44

RESPECT PEOPLE

Empower the team

Agilis haldzati szolgaltatasfejlesztés 45

OPTIMIZI

-
E

TH

= WHOL:

Improve

-
—

the entire system

Find weakest link/biggest problem in your whole system and fix that first
More programmers — not enough testers: cannot deliver more value

Agilis haldzati szolgaltatasfejlesztés

46

OW IT ALL FITS TOGETHER

Defer

S p———— Optimize the whole
commitment

_Eliminate waste
Respect people

_. Focuson
learning

Deliver fast /
Limit work

_ o to capacity /
Build quality in __ __ - Pull scheduling

automation/TDD

@

Crisp Henrik Kniberg

Agilis halozati szolgéltatasfejlesztés

47

WATERFALL, AGILE, LEAN

Waterfall
Schedule large
% NI = \ } work orders and
s . A ,.@ N align people by
—] =~ | workflow
=
Agile

Schedule small
work orders and
align people by

schedule

Lean

l
1o e rhizerta g

Agilis haldzati szolgaltatasfejlesztés

Schedule small
work orders and
align people by

workflow

48

