
Extreme Programming 
(XP)

Formulated in 1999 by Kent Beck, Ward 
Cunningham and Ron Jeffries

Agile software development methodology (others: 
Scrum, DSDM, Kanban)

Developed in reaction to high ceremony 
methodologies

1



EXAMPLe OF PRINCIPLES FROM XP 
(EXTREME PROGRAMMING)

› Test Driven Development

› Continuous Integration

› Collective Code Ownership

3



XP: Why?

• Get all the requirements before starting 
design

• Freeze the requirements before starting 
development

• Resist changes: they will lengthen schedule

• Build a change control process to ensure 
that proposed changes are looked at 
carefully and no change is made without 
intense scrutiny

• Deliver a product that is obsolete on release

Previously:

4



XP: Embrace Change

Recognize that:

• All requirements will not be known at the beginning

• Requirements will change

Use tools to accommodate change as a natural process

Do the simplest thing that could possibly work and 
refactor mercilessly

Emphasize values and principles rather than process

5



XP Practices

(Source: http://www.xprogramming.com/xpmag/whatisxp.htm)
6



The XP team

How to design and 
program the 
software

• programmers, designers, 
and architects

Where defects are 
likely to hide

• testers

Why the software is 
important

• product manager

The rules the 
software should 
follow

• domain experts

How the software 
should behave

• interaction designers

How the user 
interface should look

• graphic designers

How to interact with 
the rest of the 
company

• project manager

Where to improve 
work habits

• coach

8



XP Practices: Whole 
Team

All contributors to an XP project are one team

Must include a business representative: the ‘Customer’

• Provides requirements

• Sets priorities

• Steers project

Team members are programmers, testers, analysts, coach, manager

Best XP teams have no specialists

9



XP Team size

Assume teams with 4 to 10 
programmers (5 to 20 total team 
members). 

Applying the staffing guidelines 
to a team of 6 programmers 
produces a team that also 
includes 4 customers, 1 tester, 
and a project manager, for a 
total team size of 12 people.

10



Full-Time Team Members

This particularly applies to customers, who are 
often surprised by the level of involvement XP 

requires of them.

All the team members should sit with the team 
full-time and give the project their complete 

attention.

11



XP Practices: Planning 
Game

Two key questions in software development:

• Predict what will be accomplished by the due date

• Determine what to do next

Need is to steer the project

Exact prediction (which is difficult) is not necessary

12



XP Practices: Planning 
Game

XP Release Planning

• Customer presents required features

• Programmers estimate difficulty

• Imprecise but revised regularly

XP Iteration Planning

• Two week iterations

• Customer presents features required

• Programmers break features down into tasks

• Team members sign up for tasks

• Running software at end of each iteration
13



XP Practices: 
Customer Tests

The Customer defines one or more automated 
acceptance tests for a feature

Team builds these tests to verify that a feature is 
implemented correctly

Once the test runs, the team ensures that it keeps 
running correctly thereafter

System always improves, never backslides

14



XP Practices: Small 
Releases

Team releases running, tested software every 
iteration

Releases are small and functional

The Customer can evaluate or in turn, release to end 
users, and provide feedback

Important thing is that the software is visible and 
given to the Customer at the end of every iteration

15



XP Practices: Simple 
Design

Build software to a simple design

Through programmer testing and design improvement, keep the 
software simple and the design suited to current functionality

Design steps in release planning and iteration planning

Teams design and revise design through refactoring, through the 
course of the project

16



XP Practices: 
Informative Workspace

Your workspace is 
the cockpit of your 

development 
effort: create an 

informative 
workspace

An informative 
workspace 
broadcasts 

information into 
the room (eg. 

radiators)

It’s improve 
stakeholder trust

17



XP Practices: Pair 
Programming

All production software is built by two programmers, sitting 
side by side, at the same machine

All production code is therefore reviewed by at least one other 
programmer

Research into pair programming shows that pairing produces 
better code in the same time as programmers working singly

Pairing also communicates knowledge throughout the team

18



XP Practices: Test-
Driven Development

Teams practice TDD by working in short cycles of adding a 
test, and then making it work

Easy to produce code with 100 percent test coverage

These programmer tests or unit tests are all collected together

Each time a pair releases code to the repository, every test 
must run correctly

19



XP Practices: Design 
Improvement

Continuous design improvement process called 
‘refactoring’:

• Removal of duplication

• Increase cohesion

• Reduce coupling

Refactoring is supported by comprehensive 
testing - customer tests and programmer tests

20



XP Practices: Continuous 
Integration

Teams keep the system fully integrated at all times

Daily, or multiple times a day builds

Avoid ‘integration hell’

Avoid code freezes

10 minutes build

21



XP Practices: Collective 
Code Ownership

Any pair of programmers can improve any code at any time

All code gets the benefit of many people’s attention

Avoid duplication

Programmer tests catch mistakes

Pair with expert when working on unfamiliar code

22



XP Practices: Coding 
Standard

Code must look familiar, to support collective code ownership

All code in the system must look as though written by an 
individual

Use common coding standard

23



XP Practices: 
Sustainable Pace

Team will produce high quality product when not overly 
exerted

Avoid overtime, maintain 40 hour weeks

‘Death march’ projects are unproductive and do not produce 
quality software

Work at a pace that can be sustained indefinitely

25



Characteristics of 
Successful XP Projects

Very rapid development

Exceptional responsiveness to user and 
customer change requests

High customer satisfaction

Amazingly low error rates

System begins returning value to customers 
very early in the process

26



XP Values

Communication Simplicity

Feedback Courage

27



XP Values: 
Communication

Poor communication in software teams is one of the root 
causes of failure of a project

Stress on good communication between all stakeholders--
customers, team members, project managers

Customer representative always on site

Paired programming

28



XP Values: Simplicity

‘Do the Simplest Thing That Could Possibly 
Work’

• Implement a new capability in the simplest possible way

• Refactor the system to be the simplest possible code with 
the current feature set

‘You Aren’t Going to Need It’ (YAGNI)

• Never implement a feature you don’t need now

29



You Aren’t Gonna Need It 
(YAGNI)

Important aspect of simple design: avoid 
speculative coding. 

• Whenever you’re tempted to add something to your 
design, ask yourself if it supports the stories and features 
you’re currently delivering. If not, well... you aren’t gonna
need it. Your design could change. Your customers’ minds 
could change. 

Similarly, remove code that’s no longer in use. 

• You’ll make the design smaller, simpler, and easier to 
understand. If you need it again in the future, you can 
always get it out of version control. For now, it’s a 
maintenance burden you don’t need.

30



XP Values: Feedback

Always a running system that delivers information 
about itself in a reliable way

The system and the code provides feedback on 
the state of development

Catalyst for change and an indicator of progress

31



XP Values: Courage

Projects are 
people-centric

Ingenuity of people 
and not any 
process that 

causes a project to 
succeed

32



XP Criticism

Unrealistic--
programmer 
centric, not 

business focused

Detailed 
specifications are 

not written

Design after 
testing

Constant 
refactoring

Customer 
availability

12 practices are 
too 

interdependent

33



XP Thoughts

The best design is the code.

Testing is good. Write tests before code. Code is complete when it passes 
tests.

Simple code is better. Write only code that is needed. Reduce complexity 
and duplication.

Keep code simple. Refactor.

Keep iterations short. Constant feedback.

34



Common XP 
Misconceptions

No written design documentation

• Truth: no formal standards for how much or what kind of 
docs are needed.

No design

• Truth: minimal explicit, up-front design; design is an 
explicit part of every activity through every day.

XP is easy

• Truth: although XP does try to work with the natural 
tendencies of developers, it requires great discipline and 
consistency.

35



More Misconceptions

XP is just legitimized hacking

• Truth: XP has extremely high quality standards 
throughout the process

• Unfortunate truth: XP is sometimes used as an 
excuse for sloppy development

XP is the one, true way to build software

• Truth: it seems to be a sweet spot for certain kinds 
of projects

36



XP Summary (by ISTQB)

Values:

• communication, simplicity, feedback, courage, respect

Principles:

• humanity, economics, mutual benefit, self-similarity, improvement, 
diversity, reflection, flow, opportunity, redundancy, failure, quality, baby 
steps, accepted responsibility

Primary practices:

• sit together, whole team, informative workspace (radiators), energized 
work, pair programming, stories, weekly cycle, quarterly cycle, slack (do 
not use 100% allocation), 10 minute build, continuous integration, test 
first programming, incremental design

Many other agile practices use some aspects of XP

37



HOW IT ALL FITS TOGETHER

38


