AMOTIVE Introduction and Technical Overview

We at Almotive are committed to improving the lives of millions of drivers across the world.

We design AI software which powers self-driving vehicles, resulting in better safety, improved comfort, and increased productivity

Company details Founded in July 2015 as a spin-off of Kishonti Ltd.

Headquarter: Budapest, Hungary

Founder: László Kishonti

Investors Funded by investors:

Robert Bosch VC / Nvidia / Inventure / Draper Associates

/ Day One Capital / Samsung / Private investors

Team 100+ researchers/developers with in-depth

experience in their field

Expertise In-house developed AI algorithms and framework

10+ years in high performance embedded programming

Complete navigation and mapping solution expertise

5+ years in Computer Vision

Membership Khronos Group

Embedded Vision Alliance

L3 / L4-L5 projects

- Large European OEM
- Large global technology company
- Discussions ongoing with many other Automotive OEMs and Partners

L1 / L2 projects

- Delivering Parking Assist and rear-view camera solution for Tier1/Automotive OEM
- Delivered local positioning project for global map data provider

We Work According to Automotive Standards

Cooperation with TÜV-Rheinland to establish the internal processes regarding to:

- ISO/IEC 33020:2015 Information technology -- Process assessment -- Process measurement framework for assessment of process capability
- ISO/TS 16949 Quality Management Systems
- ISO/FDIS 26262 Road Vehicles Functional Safety

How is the Almotive Approach Unique?

Technical approach and scalability?	L5 architecture (fully self-driving) Scalable (worldwide implementation possible)	L5 architecture (fully self-driving) Not scalable (optimized for local implementation)	Develops L1/ L2 solutions gradually towards L3/L4 functionality
How to identify relevant objects?	Primary sensor: Multiple cameras + optional sensors	Primary sensor: LIDAR + camera + High definition map data	Primary sensor: Single camera + mandatory radar sensors
How well does it see?	Similar to human eye Fine details visible (predicts behavior)	Very rough picture (LIDAR cannot see behavioral cues in humans) Similar to human eye. Fine details visible	
Does it work in various weather conditions?	Rain/Snow issues handled by AI Poor image quality in low light Other sensors as backup	Full day/night functionality but low resolution Rain/Snow issues	Poor image quality in low light Other sensors as backup
What is the annotation technique?	Fast & scalable annotation, 100k images/hour Semi automatic with some human intervention	No info, assumably semi- automatic	Time consuming human annotation only
Is a mandatory chip needed?	No, software runs on most chips Almotive supports automotive embedded chips	No, software runs on high-end chip	Runs only on Mobileye's own chip
Is the training technique scalable?	Yes, simulator tool can train various weather conditions and traffic situations	No, data collection for training purposes focuses on dry, temperate climate regions. Only 10 accidents in 1.5m miles	Not that we know of
OK, so what does this all mean?	Safe, more robust, highly scalable and can be used anywhere	Might work in predefined routes, e.g. for robotaxis	Incremental improvements to safety Multi-camera functionality expected in 2018, L3/L4 in 2021

We use cameras as primary sensors due to the higher performance they enable

Advantages			Disadvantages	
Camera	K	Like the human eye, good for all use cases, best sensor for color and texture	High processing performance required	Primary
LIDAR		High precision detection unaffected by light/sound interference	Needs an HD map for localization to function, requires huge amount of data	Secondary
Radar)))	Cost effective, good as backup sensor	Poor resolution, 2D information only	Secondary

Most valuable use case

- Real-time localization, object recognition, classification, and tracking
- **E** Real-time localization, identification of objects, static 3D geometry
- Backup to detect the location of objects if high resolution sensors fail

Range and distance accuracy

0 – 1000+ m	

3 - 150 m 2 - 250 m

Dark / bad weather usage

Just like the human eye
Limited in rain and snow
Limited in rain and snow

Sensors / car	Cost / piece
6-12 pieces	\$20 - \$70
1 Velodyne/4 Ibeo	\$40,000 - \$80,000
4–8 pieces	\$500 - \$1,500

- * OPTIONAL: 3RD-PARTY NAVIGATION IS SUPPORTED
- ** OPTIONAL: VEHICLE'S OWN CONTROL SYSTEM IS SUPPORTED

Recognition Engine identifies the objects and interprets the environment around the vehicle in real time.

INPUT

Perceived environment

- Camera vision
- CAN-bus
- Optional radar signal
- Optional LIDAR data

Region specific object classes

OUTPUT

3D map of vehicle environment List of surrounding objects

- Category
- Orientation
- Distance
- Dimensions

CONSISTS OF 2 BUILDING BLOCKS

Recognition Engine Sensor Fusion

- 1. Preceiving real 3D environment via sensors
- 2. Camera is our preferred primary sensor
 - Synchronized multiple mono / stereo cameras
- 3. Optional sensors:
 - Radars, LIDAR, ultrasonic and IMU / GPS
- 4. Fuses all sensor inputs into an Artificial Intelligence interpretable format

INPUT

Perceived environment

- Camera vision
- CAN-bus
- Optional radar signal
- Optional LIDAR data

RECOGNITION ENGINE

SENSOR FUSION

OUTPUT

Synchronized snapshots

 Fused and pre-processed sensor data in AI interpretable format

Recognition Engine Object Detection and Classification

- 1. Same Al algorithm for object detection and classification
 - Bounding box
 - Pixel precise segmentation
 - Recognizes up to 100 different object classes
- 2. Determines distance / dimensions
- 3. Recognizes even partially occluded objects
- 4. Localization
 - Country specific object classes

INPUT

Synchronized snapshots

 Fused and pre-processed sensor data in Al interpretable format

Region specific object classes

OUTPUT

3D map of vehicle environment List of surrounding objects

- Category
- Orientation
- Distance
- Dimensions

- 1. In-house navigation engine which does not require HD maps for precise positioning
 - Regional localization
 - GPS position of vehicle
 - Next maneuver and distance
 - Lane indication
- 2. Special landmark information is added for accurate positioning of the vechicle even when the GPS signal is weak / lost
- 3. Can also rely on OEM installed navigation

Almotive landmark database

OEM Navigation device incl. standard map (HERE, OSM, etc)

Destination

aiDrive

LOCATION ENGINE

OUTPUT

Precise vehicle location Optimal route

Next maneuver

3D map of vehicle environment List of surrounding objects

- Category
- Orientation
- Distance
- Dimensions

Vehicle location

OUTPUT

Detailed route of driving path

 Describing position of vehicle, state, behaviour and dynamics as a function of time

Motion Engine Tracking & Prediction

- 1. Develops a short term memory of objects by analyzing changes between snapshots
- 2. Movement characteristics of region specific object classes are taken into account
- Individual deviation of behaviour is considered (Children, drunk people)
- 4. Probability distribution of future locations and speed is calculated

INPUT

3D map of vehicle environment List of surrounding objects

- Category
- Orientation
- Distance
- Dimensions

Vehicle location

OUTPUT

Predicted state

- Future speed & location
- Behavior

Motion pattern of all relevant objects

 ID, Speed, Acceleration, Direction

Motion Engine Planning & Decision

- Identifies free space based on predicted environment
- 2. Determines driving style
- 3. Creates high level plans for both normal and emergency situations
- Decides if normal or emergency situation applies

INPUT 1

Precise vehicle location Optimal route

Next maneuver

INPUT 2

Predicted state

- Future speed & location
- Behavior

OUTPUT

Driving style of our vehicle

Decision about route

 Plan of normal or emergency situation

- 1. Translates high level routing and free space information into low level controls
- 2. Calculates ego motion
- 3. Safely stops vehicle in case of emergency situation

Driving style of ego vehicle

Decision about route

 Plan of normal or emergency situation

OUTPUT

Detailed route of driving path

 Describing position of vehicle, state, behaviour and dynamics as a function of time

- 1. Executes chosen trajectory through the combination of (Control loop)
 - Vehicle actuators such as acceleration, braking, steering, gearshift
 - Auxiliary functions such as turn indicators, headlights, horn, etc
- 2. Control Engine is optional:
 - aiDrive can communicate with the vechicle's default control system

Detailed route of driving path

 Describing position of vehicle, state, behaviour and dynamics as a function of time

OUTPUT

Low level control

- Actuator control (acceleration, brake, steering, gearshift)
- Auxiliary control (indicators, lights, horn)

aiDrive is already being tested on the road

- 1. Automated and fast process
- 2. Intrinsic/extrinsic calibration of cameras
- Includes calibration of LIDAR to cameras
- 4. Radar solution is still under development, as radar currently penetrates our calibration kit (material issue)

Physical calibration rig

aiKit

CALIBRATION

OUTPUT

Calibrated sensors:

- Multiple camera
- Radars, LIDARS, etc.

- Real-time operation and simultaneous recording is used (logging of detection output)
 - Black-box functionality
 - Multisensor recording and playback
 - Modular sensor setup
- 2. HIL (hardware in the loop) testing
- 3. SIL (software in the loop) algorithm test

Calibrated sensors:

- Multiple camera
- Radars, LIDARS, etc.

Vechicle data:

CAN-bus

aiDrive detection output

aiKit

DATA COLLECTION

OUTPUT

Synchronized data stream in user defined format

- 1. Semi-automated tool annotates reliably and fast (15 times faster than manual)
- 2. Capable of multisensory annotation based on camera image labelling
- 3. We have user definable object classes, attributes and output formats

Synchronized data stream in user defined format

OUTPUT

Labelled data according to the output format

- ID
- Object class
- Size, Distance, Orientation

Annotation of Non-camera Sensor Data

- 1. Capability to process sensor data from LIDAR and radar to verify the depth calculated by the cameras
- 2. Intelligent sensor fusion
 - Interconnected camera + LIDAR (depth) with camera based annotation
 - The annotated data is further extended with the radar's object list
 - The output is the complete set of necessary training inputs (object ID, class, distance, size and orientation)
- 3. Direct annotation of LIDAR point cloud data
 - Not as relevant for Almotive since primary sensor is camera
 - Research is in progress on 3D point cloud annotation methods

aiKit Data Generation Tool

- 1. Renders photorealistic camera images or sensor fused data in various
 - Weather & lighting conditions
 - Occlusion, orientation, distance

 In fact much easier than generating visual data

INPUT

3D object models

 Vehicles, traffic signs, road paintings etc.

OUTPUT

Training data (image or fused data)

Ground-truth annotation

- 1. In-house developed training tool for all type of neural networks (CNN, RNN, etc.)
- Massively parallel GPUs used to train faster
- Compatible with the major toolsets (Caffe, Torch, Tensor flow)

Labelled or generated data

Feedback from testing tool

OUTPUT

Trained network structure

- 1. Generates complex and realistic traffic situations
 - Photorealistic camera images
 - Different weather conditions
 - Multiple sensor inputs
 - Vehicle dynamics
- 2. Train and test aiDrive in various scenarios
- 3. Will accelerate training time significantly

Manually parametered scenes for testing

OUTPUT

- Extreme traffic situations
- Various weather and lighting scenarios
- Simulated camera and sensor data

- 1. Verification tests are based on specific customer requirements
- 2. Modular data verification
 - Various environmental conditions and object classes
 - Area of interest can be modified
 - Accuracy of evaluation criteria can be adjusted

Trained neural networks

Test cases

aiKit

VERIFICATION

OUTPUT

Test and evaluation metrics

Feedback to the training process

Iterative Test Cycles Accelerated by Simulation

An example test program:

- 1. Test cases submitted into test tool
- 2. Testing vol. 1
 - a. Road testing. Test tool recognizes automatically predefined test cases while driving and evaluates performance
 - b. Simulator testing. Simulator can provide random or predefined driving scenarios. Test tool recognizes automatically predefined test cases while driving and evaluates performance
- 3. Test tool outputs the test results with opportunity for human check
- 4. Define additional test cases
- 5. Testing vol. 2
 - a. Road testing efficiency will depend on encountered test situations (which can be organized)
 - b. With simulator test tool can run a large test set without human intervention. Testing can focus on difficult corner cases instead of collecting millions of eventless miles

We offer performance efficient NN accelerated hardware for automotive embedded solutions

- 1. Benefits: low power consumption, high bandwidth, low latency NN computation
 - ASIC's power consumption is 3% of a GPU's
- 2. We provide the NN optimized RTL design for chip companies
- 3. Almotive also provides hardware agnostic solution to fit OEM / Tier 1 preferences

Almotive initiated the Khronos Working Group to create a new NN data format standard (NNEF) and actively contributes to the specifications

- 1. The NNEF standard encapsulates:
 - Neural network structure
 - Data formats
 - Common operations (convolution, pooling, normalization etc.)
 - Formal network semantics
- 2. Enables reliable import / export between network creating tools, inference engines and other toolkits
- 3. Reduces deployment friction and encourages a richer mix of crossplatform deep learning tools, engines and applications

Members of the Khronos Group

Contact

Q Budapest Office

Szepvolgyi ut 39. 1037 Budapest, Hungary

♀ Silicon Valley Office

1907 Colony St, Mountain View CA, USA

www.aimotive.com

