INTRODUCTION
TO TESTING

Gusztav Adamis

adamis@tmit.bme.hu

WHITE AND BLACK BOX
TESTING

» White box testing — typically during development
— Access to code
— Access to development environment

» Black box testing
— Internal structure of the code is not known/interested

— Checks the communication between the tested entity and its
environment

— IUT/SUT — Implementation/System Under Test
— Tester — may be decomposed
—PCO - Point of Control and Observation

Agilis halozati szolgaltatasfejlesztés

BLACK BOX TESTING

» Black box testing
— Implementation/System

Under Test
— Point of Control and
Observation
» Not possible to test all the Verdict:
situations 0ass,
— Test Purposes fail
iInconclusive

Agilis halozati szolgaltatasfejlesztés

CON;

-ORMANC

Informal
specification

Formal
specification

=N

Implementati

L

on

Agilis halozati szolgaltatasfejlesztés

= TESTING

» Checks if IUT
conforms to its
specification

» Experiments
programmed into Test
Cases

.I Test cases i

TEST SUITES

» Verification:
— Check the correctness of formal model

Protocol

» ATS — Abstract Test Suite specification

— High-level communication 1 Modeling

— Test for every feature Verification :-;LFormal protocol

— Parameters |, description
» ETS — Executable Test Suite Test Parposes 1 validation

— Coding/Decoding of messages ATS

— Tests only for implemented features |

— Parameters substituted by concrete ETS

values # Test execution

» Validation Test results

— Checks the correctness of ATS

Agilis halozati szolgaltatasfejlesztés 5

TEST CASES IN BLACK-

BOX TeST

» Implementation of a Test Purpose
— TP defines an experiment

» Focuses on a single requirement

» Returns verdict (pass, fall,
inconclusive)

» Typically a sequence of action-
observation-verdict update:

— Action (stimulus): non-blocking
(e.g. transmit PDU, start timer)

— Observation (event): takes care of
multiple alternative events (e.g.
expected PDU, unexpected PDU,
timeout)

Agilis halozati szolgaltatasfejlesztés

Stimulus

non-blocking

alternatives

T

=S5T TR

Possible event

seqguences
AIA A
2B 7B 7F
| |
IC IC
| |
2D ?F
|
IE

Agilis ha

|6zati szolgaltatasfejlesztés

—

C C
Behaviour tree
1A
T~
?B ?F
|
1IC
T~
?D ?F
|
IE

Alternatives
1A
?B
1IC
?D
IE
?F
?F
.

TEST

=X

—CUTION

»y Manual test execution

»y Automated test execution
— Test scripts

- Log files

Agilis halozati szolgaltatasfejlesztés

INDEPENDENCE AND STRUCTURE
OF ABSTRACT TEST CASES

» Abstract test cases should contain

— preamble: sequence of test events
to drive IUT into initial testing state
from the starting stable testing state

—test body: sequence of test events
to achieve the test purpose

.
— postamble: sequence of test events
which drive IUT into a finishing stable

testing state

ff'@)

» Preamble/postamble may be @loamble, body, PostThC 9
absent |dIe |dIe

Agilis halozati szolgaltatasfejlesztés 9

TEST RESULTS

y Test outcome
— foreseen
— unforeseen — test case errors

» Verdict
— pass
— fall
—Inconclusive
» Test log

) Requirements on test outcomes
—repeatable
— comparable
—auditable

Agilis halozati szolgaltatasfejlesztés 11

CONFORMANCE TEST
PHASES

» Capability Test
— Static analysis
If protocol options selected correctly
» Basic Interconnection Test
—IUT able to communicate at all

» Behaviour Test

» Conformance Resolution Test
— Non standardised methods
— Multilayer tests
— Detects reasons of non-conform situations
Inconclusive

Agilis halozati szolgaltatasfejlesztés 12

CONFORMANCE TEST

DOCUMENTS

» PICS: Protocol Implementation Conformance Statement
» PIXIT: Protocol Implementation eXtra Information on

Testing

» PCTR/SCTR: Protocol/System Conformance Test Report

Protocol
Specification

\ 4

Test Purposes

v

PIXIT

Abstract Test
Suite (ATS)

V/

A 4

\ 4
PICS
Product
(IuT)

/

Test Log

Agilis halozati szolgaltatasfejlesztés

»| Executable

Test Suite
(ETS)

|

|-

PCTR

T

SCTR

13

PASSIVI

Protocol

—

=5 T

—R

Protocol

Entity

» Only observes
— waits for error

Passive
Tester
(Protocol
analyzer)

no guarantee to happen

» Protocol Analyzer

Agilis halozati szolgaltatasfejlesztés

Entity

14

ACTIVE TESTER

Protocol Protocol
Entity Tester

» Active
—can send messages

» Valid testing

» Provocative testing
— Invalid
Sends syntactically incorrect messages
— Improper
Sends syntactically correct messages, but at wrong time/state
» Test cases are generated before testing starts

Agilis halozati szolgaltatasfejlesztés

TEST ARRANG

» 1ISO 9646

» Upper Tester
» Lower Tester

» Local Test Method

» Distributed Test Method

» Coordinated Test Method
» Remote Test Method

Agilis halozati szolgaltatasfejlesztés

ENTS

16

LOCAL TEST MeTHOD

Test System
PCO
uT
ASPs
TCP

LT 41— PDUs —

PCO | ASPs

Service-Provider

a) The Local test methods

Agilis halozati szolgaltatasfejlesztés

17

DISTRIBUTED TeST MeTHOD

Test System SUT
LT TCP uT
PCO | ASPs
<4 PDUs
PCO | ASPs
Service-Provider

b) The Distributed test methods

Agilis halozati szolgaltatasfejlesztés

COORDINATED TeST MeTHOD

Test System SUT

LT uT

TCP
TM - PDUs

€| PDUs |

PCO | ASPs

Service-Provider

c) The Coordinated test methods

Agilis halozati szolgaltatasfejlesztés 19

REMOTE

TeEST METHOD

Test System L
LT TCP
4—— PDUs —
PCO | ASPs
Service-Provider

Agilis halozati szolgaltatasfejlesztés

T0720460-94d08
d) The Remote test methods

20

ESIGN = TEST PHASES
Operational
system
A
pser > Preparation — 5 Acceptange
requirements Acceptance test test execution
X 7
System i Preparation System.
requirements System test test execution
X , A

Global p : Integration
design [Ieperaton test execution
Integration test

X

Detailed Component
design test execution

Implementation

Agilis halozati szolgaltatasfejlesztés

UNIT TEST

» Unit testing
— also known as component, module or program testing,

» Searches for defects in, and verifies the functioning of
software that are separately testable
—e.g. modules, programs, objects, classes, etc.

y Focuses on one class or method

» Small, fast
— Unit tests run fast. If they don't run fast, they aren’t unit tests.
— All the unit tests shall run in less than ~10 seconds

Agilis halozati szolgaltatasfejlesztés 22

UNIT TEST

» White-box testing type
— Access to code
— Access to development environment
— Writes the programmer/developer
Sometimes a different one
— Defects fixed when found

» They test how the code Is implemented rather the concept

Agilis halozati szolgaltatasfejlesztés

23

COMPONENT /UNIT TEST

» All code must have unit tests
» All code must pass all unit tests before it can be released

» When a bug Is found, tests are created

Agilis halozati szolgaltatasfejlesztés

24

UNIT TEST

» Mocking:

S

— substitutes its own object (the “mock object”) for an object that talks

to the outside world

—checks that it is called correctly and provides a pre-scripted

response
» Stubs and Drivers

Component: A

Component: B

Agilis halozati szolgaltatasfejlesztés

A Driver
l ,, l
Stub B

25

INTEGRATION TESTS

» Integration testing tests interfaces between components,
Interactions to different parts of a system such as an
operating system, file system and hardware or interfaces
between systems

» Checks how code communicates with the rest of world
— talks to a database
— communicates across a network
—touches the file system
— special things to your environment (such as editing configuration
files) to be done to run it
» Focused integration test
— Tests just one interaction

Agilis halozati szolgaltatasfejlesztés 26

LeVELS OF INTEGRATION
TESTING

» Component integration testing

— tests the interactions between software components and is done
after component testing;

» System integration testing

— tests the interactions between different systems and may be done
after system testing.

» The greater the scope of integration, the more difficult it
becomes to isolate failures to a specific interface

Agilis halozati szolgaltatasfejlesztés 27

INTEGRATION TEST
APPROACHES

» ‘Big-bang' integration testing
— All components or systems are integrated simultaneously
— Advantage: everything is finished before integration testing starts
no need to simulate (yet unfinished) parts

— Disadvantage: time-consuming, difficult to trace the cause of failures
with this late integration

— Good if expecting to find no problems

» Incremental testing

— All components are integrated one by one, and a test is carried out
after each step

— Advantage: defects are found early in a smaller assembly when it is
relatively easy to detect the cause

— Disadvantage: it can be time-consuming since stubs and drivers
have to be developed and used in the test

Agilis halozati szolgaltatasfejlesztés 28

TYPES OF INCREMENTAL
INTEGRATION TeESTS

» Top-down: testing takes place from top to bottom, following
the control flow or architectural structure (e.g. starting from
the GUI or main menu)

— Components or systems are substituted by stubs.

» Bottom-up: testing takes place from the bottom of the
control flow upwards
— Components or systems are substituted by drivers
» Functional incremental: integration and testing takes place
on the basis of the functions or functionality, as
documented in the functional specification

Agilis halozati szolgaltatasfejlesztés 29

INTEGRATION TESTS

» Start with testing high-risk interfaces
— Prevents major defects at the end of the integration test stage

— If integration tests are planned before components or systems are
built, they can be developed in the order required for most efficient
testing

» Integration tests concentrate solely on the integration itself

— Checks the communication between the integrated components not
the functionality of them

» Testing of specific non-functional characteristics (e.g.
performance) may also be included

» May be carried out by developers or by testers

Agilis halozati szolgaltatasfejlesztés 30

INTEGRATION TESTS

» Shall run in the same way
—If e.g. a data-base value needed — write it before the test
— Independent from the order of execution

» Shall run on its own
— Set up its environment
— Restore the previous environment at the end
Even if fails or exception thrown (!)
» Not needed too many
— Each shall test just one aspect of the communication
— Number is proportional to the external interaction types
— If lot of needed can indicate design problem
Business logic is not well separated from communication

Agilis halozati szolgaltatasfejlesztés

31

SYSTEM TeESTS

» System testing Iis concerned with the behavior of the whole
system/product

— It may include tests based on risks and/or requirements
specification, business processes, use cases

— System testing is most often the final test on behalf of development
to verify that the system to be delivered meets the specification

— Purpose: to find as many defects as possible
— Investigate both functional and non-functional requirements
Typical non-functional tests include performance and reliability
— Requires a controlled test environment
should correspond to the final target or production environment

Agilis halozati szolgaltatasfejlesztés 32

ACCEPTANCE TESTS

» When development organization has performed system
test, system will be delivered to the user or customer for
acceptance testing

— Acceptance testing is the responsibility of the user or customer

— The execution of the acceptance test requires a test environment
that is representative of the production environment

— Acceptance testing determines whether the system is fit for its
purpose

— Finding defects should not be the main focus in acceptance testing

— Although it assesses the system's readiness for deployment and
use

— Not necessarily the final level of testing

large-scale system integration test may come after the
acceptance of a system.

Agilis halozati szolgaltatasfejlesztés 33

TYPES OF ACCEPTANCE
TESTING

» User acceptance test

— Focuses on the functionality: validates the fitness-for-use of the
system by the business user

» Operational (or production) acceptance test

— Validates whether the system meets the requirements for operation

—May include testing of backup/restore, disaster recovery,
maintenance tasks and periodic check of security vulnerabilities

» Contract acceptance testing

— Contract acceptance testing is performed against a contract's
acceptance criteria

— Acceptance should be formally defined when the contract is agreed
» Compliance (regulation) acceptance testing

— Performed against the regulations which must be adhered to, such
as governmental, legal or safety regulations

Agilis halozati szolgaltatasfejlesztés 34

ALPHA/BETA TESTS

» If the system has been developed for the mass market
— Feedback is needed from potential or existing users before the
software product is put out for sale commercially.
» Alpha testing
— Takes place at the developer's site.

— A cross-section of potential users and members of the developer's
organization are invited

— Developers observe the users and note problems

» Beta testing

— A cross-section of users invited, who install it and use it under real-
world working conditions.

— The users send records of incidents with the system to the
development organization where the defects are repaired.

Agilis halozati szolgaltatasfejlesztés 35

TEST TYPES: THE
TARGETS OF TESTING

» A test type is focused on a particular test objective
—testing of a function to be performed by the component or system;
—a nonfunctional quality characteristic, such as reliability or usability;
—the structure/architecture of the component or system;

—related to changes,

l.e. confirming that defects have been fixed (confirmation testing,
or re-testing)

looking for unintended changes (regression testing).

» Depending on its objectives, testing will be organized
differently
— E.g component testing aimed at performance would be quite

different to component testing aimed at achieving decision
coverage.

Agilis halozati szolgaltatasfejlesztés 37

~UNCTIONAL T

=ESTING

» The function of a system (or component) is

—'what it does'.

— Typically described in a requirements specification, a functional

specification, or in use cases

» Functional testing considers the specified behavior

— Black-box testing
—Based upon ISO 9126

— Can focus on suitability, interope
compliance

Agilis halozati szolgaltatasfejlesztés

rability, security, accuracy and

38

VERSIONS OF FUNCTION
TESTING

» Requirements-based testing
— Uses a specification of the functional requirements

— A good way to start is to use the table of contents of the
requirements specification

— Decide what to test (or not to test)
— Prioritize the requirements based on risk criteria
This ensures that the most important/critical tests are included

» Business-process-based testing
— Uses knowledge of the business processes
— E.g business processes of a payroll system can be:
someone joins the company,
IS paid on a regular basis
leaves the company, etc.

Agilis halozati szolgaltatasfejlesztés 39

NON-FUNCTIONAL
TESTING

» Testing of product quality characteristics or non-functional
attributes of the system
—how well or how fast the system works
performance testing (different load)
- load testing (expected load)
- stress testing (overloading)
usability testing
maintainability testing
reliability testing
portability testing

Agilis halozati szolgaltatasfejlesztés 40

LOAD TEST

» Test how the system behaves in real environment

—EXpected traffic

» Testing with (high) traffic
—Different traffic models
—Simulating a lot of users
—Need automation
—Time limits

»Very expensive tools

Agilis halozati szolgaltatasfejlesztés

41

QUALITY CHARACTERISTICS
150 9126

» Functionality (Functional testing)
— suitability, accuracy, security, interoperability;
» Reliability
— Maturity (robustness), fault-tolerance, recoverability

» Usability
— understandability, learnability, operability, attractiveness

» Efficiency
— time behavior (performance), resource utilization

» Maintainability
—analyzability, changeability, stability, testability
» Portability
— adaptability, installability, co-existence, replaceability

Agilis halozati szolgaltatasfejlesztés

42

TESTING RELATED TO
CHANGES - 1

» Re-testing (Confirmation testing)

— Test fails -> determine the cause -> defect is reported -> new
version of the software in which defect fixed

— Execute the failed test again to confirm that the defect has indeed
been fixed
» Important to ensure that the test is executed in exactly the
same way as it was the first time using the same
— Inputs
— Data
— Environment

Agilis halozati szolgaltatasfejlesztés 44

TESTING RELATED TO
CHANGES - 2

» Regression testing

— Check if the modification of software/environment do not introduce
bug in the non-modified part

» Also executes test cases that have been executed before

—for regression testing, the test cases probably passed the last time
they were executed

— but in confirmation testing - they failed the last time

» Designed to collectively exercise most functions

Agilis halozati szolgaltatasfejlesztés 45

REGRESSION TES

» All the regression tests shall be executed every time a new

version of software is produced
— After bug-fixes
— Change existing functionality
— Introduce new functionality
— Environment changes
E.g. new Data-base, new complier

» I[deal candidates for automation

Agilis halozati szolgaltatasfejlesztés

46

cVOLUTION OF
REGRESSION TeST SUITE

» Maintenance of a regression test suite Is necessary
— Shall evolve in line with the software

» When new functionality is added to a system
— New regression tests should be added

» If old functionality is changed or removed
— Regression tests be changed or removed

» If becomes too large
— Subset of the test cases has to be chosen
— Keep the new/recently failed tests

— Eliminate test cases that have not found a defect for a long time
(though this approach should be used with some care!)

Agilis halozati szolgaltatasfejlesztés

