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› White box testing – typically during development

– Access to code

– Access to development environment

› Black box testing 

– Internal structure of the code is not known/interested

– Checks the communication between the tested entity and its 

environment

– IUT/SUT – Implementation/System Under Test

– Tester – may be decomposed

– PCO – Point of Control and Observation

White and Black box 
testing
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› Black box testing

– Implementation/System 

Under Test

– Point of Control and 

Observation

› Not possible to test all the 

situations

– Test Purposes

Black Box Testing
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› Checks if IUT 

conforms to its 

specification

› Experiments 

programmed into Test 

Cases

conformance Testing
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› Verification:

– Check the correctness of formal model

› ATS – Abstract Test Suite

– High-level communication

– Test for every feature

– Parameters

› ETS – Executable Test Suite

– Coding/Decoding of messages

– Tests only for implemented features

– Parameters substituted by concrete 

values

› Validation

– Checks the correctness of ATS

Test Suites
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› Implementation of  a Test Purpose

– TP defines an experiment

› Focuses on a single requirement

› Returns verdict (pass, fail, 

inconclusive)

› Typically a sequence of action-

observation-verdict update:

– Action (stimulus): non-blocking 

(e.g. transmit PDU, start timer)

– Observation (event): takes care of 

multiple alternative events (e.g. 

expected PDU, unexpected PDU, 

timeout) 

Test cases in black-
box test
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Test Tree
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› Manual test execution

› Automated  test execution

– Test scripts

– Log files

Test Execution
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› Abstract test cases should contain

– preamble: sequence of test events 

to drive IUT into initial testing state

from the starting stable testing state

– test body: sequence of test events 

to achieve the test purpose

– postamble: sequence of test events 

which drive IUT into a finishing stable 

testing state

› Preamble/postamble may be 

absent

Independence and structure 
of abstract test cases
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› Test outcome

– foreseen

– unforeseen – test case errors

› Verdict 

– pass 

– fail

– inconclusive

› Test log

› Requirements on test outcomes

– repeatable

– comparable

– auditable

Test Results
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› Capability Test

– Static analysis

› if protocol options selected correctly

› Basic Interconnection Test

– IUT able to communicate at all

› Behaviour Test

› Conformance Resolution Test

– Non standardised methods

– Multilayer tests

– Detects reasons of non-conform situations

› inconclusive

Conformance Test 
Phases
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› PICS: Protocol Implementation Conformance Statement

› PIXIT: Protocol Implementation eXtra Information on 

Testing

› PCTR/SCTR: Protocol/System Conformance Test Report

Conformance Test 
Documents
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› Only observes

– waits for error

› no guarantee to happen

› Protocol Analyzer

Passive Tester
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› Active

– can send messages

› Valid testing

› Provocative testing

– Invalid

› Sends syntactically incorrect messages

– Improper

› Sends syntactically correct messages, but at wrong time/state

› Test cases are generated before testing starts

Active Tester
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› ISO 9646

› Upper Tester

› Lower Tester

› Local Test Method

› Distributed Test Method

› Coordinated Test Method

› Remote Test Method

Test Arrangements
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Local Test Method
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Distributed Test Method
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Coordinated Test Method
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Remote Test Method
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› Unit testing

– also known as component, module and program testing, 

› Searches for defects in, and verifies the functioning of 

software that are separately testable

– e.g. modules, programs, objects, classes, etc.

› Focuses on one class or method

› Small, fast

– Unit tests run fast. If they don’t run fast, they aren’t unit tests.

– All the unit tests shall run in less than ~10 seconds

Unit test
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› White-box testing type

– Access to code

– Access to development environment

– Writes the programmer/developer

› Sometimes a different one

– Defects fixed when found 

› They test how the code is implemented rather the concept

Unit test
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Component / Unit  test

› All code must have unit tests

› All code must pass all unit tests before it can be released

› When a bug is found, tests are created
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› Mocking:

– substitutes its own object (the “mock object”) for an object that talks 

to the outside world

– checks that it is called correctly and provides a pre-scripted 

response

› Stubs and Drivers 

Unit tests
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› Integration testing tests interfaces between components, 

interactions to different parts of a system such as an 

operating system, file system and hardware or interfaces 

between systems

› Checks how code communicates with the rest of world

– talks to a database

– communicates across a network

– touches the file system

– special things to your environment (such as editing configuration 

files) to be done to run it

› Focused integration test

– Tests just one interaction

Integration Tests
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› Component integration testing 

– tests the interactions between software components and is done 

after component testing;

› System integration testing 

– tests the interactions between different systems and may be done 

after system testing. 

› The greater the scope of integration, the more difficult it 

becomes to isolate failures to a specific interface

Levels of Integration 
Testing

Agile Network Service Development 27



› ‘Big-bang' integration testing

– All components or systems are integrated simultaneously

– Advantage: everything is finished before integration testing starts

› no need to simulate (as yet unfinished) parts

– Disadvantage: time-consuming, difficult to trace the cause of failures 

with this late integration

– Good if expecting to find no problems

› Incremental testing

– All components are integrated one by one, and a test is carried out 

after each step

– Advantage: defects are found early in a smaller assembly when it is 

relatively easy to detect the cause. 

– Disadvantage: it can be time-consuming since stubs and drivers 

have to be developed and used in the test

Integration test 
approaches
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› Top-down: testing takes place from top to bottom, following 

the control flow or architectural structure (e.g. starting from 

the GUI or main menu)

– Components or systems are substituted by stubs.

› Bottom-up: testing takes place from the bottom of the 

control flow upwards

– Components or systems are substituted by drivers

› Functional incremental: integration and testing takes place 

on the basis of the functions or functionality, as 

documented in the functional specification

Types of incremental 
integration tests
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› Start with testing high-risk interfaces

– Prevents major defects at the end of the integration test stage

– If integration tests are planned before components or systems are 

built, they can be developed in the order required for most efficient 

testing

› Integration tests concentrate solely on the integration itself

– Checks the communication between the integrated components not 

the functionality of them 

› Testing of specific non-functional characteristics (e.g. 

performance) may also be included

› May be carried out by developers or by testers

Integration tests
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› Shall run in the same way

– If e.g. a data-base value needed – write it before the test

– Independent from the order of execution

› Shall run on its own

– Set up its environment

– Restore the previous environment at the end

› Even if fails or exception thrown (!)

› Not needed too many

– Each shall test just one aspect of the communication

– Number is proportional to the external interaction types

– If lot of needed can indicate design problem

› Business logic is not well separated from communication

Integration tests
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› System testing is concerned with the behavior of the whole 

system/product

– It may include tests based on risks and/or requirements 

specification, business processes, use cases

– System testing is most often the final test on behalf of development 

to verify that the system to be delivered meets the specification

– Purpose: to find as many defects as possible

– Investigate both functional and non-functional requirements

› Typical non-functional tests include performance and reliability

– Requires a controlled test environment

› should correspond to the final target or production environment

System Tests
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› When development organization has performed system 

test, system will be delivered to the user or customer for 

acceptance testing 

– Acceptance testing is the responsibility of the user or customer

– The execution of the acceptance test requires a test environment 

that is representative of the production environment

– Acceptance testing determines whether the system is fit for its 

purpose

– Finding defects should not be the main focus in acceptance testing

– Although it assesses the system's readiness for deployment and 

use

– Not necessarily the final level of testing 

› large-scale system integration test may come after the 

acceptance of a system.

Acceptance Tests
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› User acceptance test 

– Focuses on the functionality: validates the fitness-for-use of the 

system by the business user 

› Operational (or production) acceptance test 

– Validates whether the system meets the requirements for operation

– May include testing of backup/restore, disaster recovery, 

maintenance tasks and periodic check of security vulnerabilities

› Contract acceptance testing

– Contract acceptance testing is performed against a contract's 

acceptance criteria

– Acceptance should be formally defined when the contract is agreed

› Compliance (regulation) acceptance testing

– Performed against the regulations which must be adhered to, such 

as governmental, legal or safety regulations

Types of Acceptance 
Testing
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› If the system has been developed for the mass market

– Feedback is needed from potential or existing users before the 

software product is put out for sale commercially.

› Alpha testing

– Takes place at the developer's site. 

– A cross-section of potential users and members of the developer's 

organization are invited 

– Developers observe the users and note problems

› Beta testing

– A cross-section of users invited, who install it and use it under real-

world working conditions. 

– The users send records of incidents with the system to the 

development organization where the defects are repaired.

Alpha/Beta tests
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› Typically tests use cases

– Acceptance tests

– Functional tests

› Touches (almost) all components of the system

– User interface, business layer, database

› Slow

– Labor intensive setup, configuration, teardown

– Tend to break when the system/labor configuration changes

– Tests a lot of branches in code – but what exactly?

– Run seldom – at releasing

End-to-End tests
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› A test type is focused on a particular test objective

– testing of a function to be performed by the component or system; 

– a nonfunctional quality characteristic, such as reliability or usability; 

– the structure/architecture of the component or system; 

– related to changes, 

› i.e. confirming that defects have been fixed (confirmation testing, 

or re-testing) 

› looking for unintended changes (regression testing). 

› Depending on its objectives, testing will be organized 

differently 

– E.g component testing aimed at performance would be quite 

different to component testing aimed at achieving decision 

coverage.

TEST TYPES: THE 
TARGETS OF TESTING
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› The function of a system (or component) is 

– 'what it does'. 

– Typically described in a requirements specification, a functional 

specification, or in use cases

› Functional testing considers the specified behavior 

– Black-box testing

– Based upon ISO 9126 

– Can focus on suitability, interoperability, security, accuracy and 

compliance

functional testing

Agile Network Service Development 38



› Requirements-based testing 

– Uses a specification of the functional requirements

– A good way to start is to use the table of contents of the 

requirements specification 

– Decide what to test (or not to test)

– Prioritize the requirements based on risk criteria

› This ensures that the most important/critical tests are included

› Business-process-based testing

– Uses knowledge of the business processes

– E.g business processes of a personnel and payroll system can be:

› someone joins the company,

› is paid on a regular basis

› leaves the company, etc.

Versions of Function 
testing 
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› Testing of product quality characteristics or non-functional 

attributes of the system 

– how well or how fast the system works

› performance testing (different load)

› load testing (expected load)

› stress testing (overloading)

› usability testing 

› maintainability testing 

› reliability testing

› portability testing

non-functional 
testing
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› Test how the system behaves in real environment

–Expected traffic

› Testing with (high) traffic

–Different traffic models

–Simulating a lot of users

–Need automation

–Time limits

› Off-line, on-line

› Very expensive tools

Load Test
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› Functionality (Functional testing)

– suitability, accuracy, security, interoperability; 

› Reliability

– Maturity (robustness), fault-tolerance, recoverability

› Usability

– understandability, learnability, operability, attractiveness

› Efficiency

– time behavior (performance), resource utilization

› Maintainability

– analyzability, changeability, stability, testability

› Portability

– adaptability, installability, co-existence, replaceability

Quality Characteristics 
iso 9126
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› Re-testing (Confirmation testing)

– Test fails -> determine the cause -> defect is reported -> new 

version of the software in which defect fixed

– Execute the failed test again to confirm that the defect has indeed 

been fixed

› Important to ensure that the test is executed in exactly the 

same way as it was the first time using the same 

– Inputs 

– Data

– Environment

Testing related to 
changes - 1
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› Regression testing

– Check if the modification of software/environment do not introduce 

bug in the non-modified part

› Also executes test cases that have been executed before 

– for regression testing, the test cases probably passed the last time 

they were executed

– but in confirmation testing - they failed the last time

› Designed to collectively exercise most functions 

Testing related to 
changes - 2
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› All the regression tests shall be executed every time a new 

version of software is produced

– After bug-fixes

– Change existing functionality

– Introduce new functionality

– Environment changes

› E.g. new Data-base, new complier

› Ideal candidates for automation

Regression tests – cTD.
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› Maintenance of a regression test suite is necessary

– Shall evolve in line with the software

› When new functionality is added to a system

– New regression tests should be added 

› If old functionality is changed or removed 

– Regression tests be changed or removed

› If becomes too large

– Subset of the test cases has to be chosen

– Keep the new/recently failed tests

– Eliminate test cases that have not found a defect for a long time 

(though this approach should be used with some care!)

Evolution of 
regression Test Suite
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