
TDD –
test-driven

Development

Gusztáv Adamis
adamis@tmit.bme.hu

› “What programming languages really need is a ‘DWIM’

instruction, Do what I mean, not what I say.”

› Software requires perfection

– People not perfect – buggy code

› A tool needed to alert you immediately when a mistake is

made

– And even eliminate the need of debugging

› Test-Driven Development (Test First Development)

– Rapid cycle of testing – coding – refactoring

Introduction

2Agile Network Service Development

› Punchcards – intensive testing before compilation

› Language sensitive editors – can detect syntactical errors

on-the-fly

› TDD – can find semantic errors (almost) on-the-fly

– Every few minutes verifies the code

– If error: only few lines to check

– Therefore bugs are easy to check and fix

Introduction

3Agile Network Service Development

› New task – several lines only

› Write a test first

– Shall fail

› Write the code

– The simplest that passes the test

– No future features

– Refactor or new feature

› Though not refactor on every cycle,

always stop and seriously consider if

design needs refactoring

› Refactor

– No new feature just structure change

– All test shall pass as before

TDD Think

Red Bar

Green Bar

Refactor

4Agile Network Service Development

› Task:

Program a Java class to parse an HTTP query string

› HTTP Query string:

– http://www.example.com/mypage.html?crcat=test&crsource=test&cr

kw=buy-a-lot

– Key=value pairs

– Concatenated by &

TDD Example: parse
HTTP Query string

5Agile Network Service Development

› The first step is to imagine the features you want the code

to have

› “I need my class to separate name/value pairs into a

HashMap”

– Unfortunately, this more than five lines to code -> think of a smaller

increment

– Often, the best way to make the increments smaller is to start with

seemingly trivial cases.

› “I need my class to put one name/value pair into a

HashMap”

Think

Agile Network Service Development 6

public void testOneNameValuePair() {

QueryString query = new QueryString("name=value");

assertEquals(1, query.count());

}

› To compile must be added:
public class QueryString {

public QueryString(String queryString) {}

public int count() { return 0; }

}

Test fails – Red Bar

Example – Test writing

7Agile Network Service Development

› Write the code that passes the test

› Do not count with possible further requirements – use the

simplest solution

– Code remains shortest, fastest that satisfies the needs of the current

specification

– Specification may change at any time, at such case no unused code

left in the program

– Open for several possible continuations

public int count() { return 1; }

Test passes – Green Bar

Example – coding

8Agile Network Service Development

› Not to deal with multiple query strings yet

› Test an empty string as an argument

Next step?

Agile Network Service Development 9

public void testNoNameValuePairs() {

QueryString query = new QueryString("");

assertEquals(0, query.count());

}

public class QueryString {

private String _query;

public QueryString(string queryString) {

_query = queryString;

}

public int count() {

if ("".equals(_query)) return 0;

else return 1;

}

}

Example

10Agile Network Service Development

testNull()

Duplication from

tests remove

public void testNull() {

try {

QueryString query = new QueryString(null)

fail("Should throw exception");

}

catch (NullPointerException e) {

// expected

}

}

public QueryString(String queryString) {

if (queryString == null) throw new

NullPointerException();

_query = queryString;

}

Example – testNull()

11Agile Network Service Development

testNull()

Duplication from

tests remove

› Write valueFor() that returns the value for a name

› Just for one entry

Next step?

Agile Network Service Development 12

public void testOneNameValuePair() {

QueryString query = new QueryString("name=value");

assertEquals(1, query.count());

assertEquals("value", query.valueFor("name"));

}

public String valueFor(String name) {

String[] nameAndValue = _query.split("=");

return nameAndValue[1];

}

Example – valueFor()

13Agile Network Service Development

Duplication from

tests remove

Test not existing name

Test if 0 or more than 1 =

public void testMultipleNameValuePairs() {

QueryString query = new

QueryString("name1=val1&name2=val2&name3=val3");

assertEquals("val1", query.valueFor("name1"));

assertEquals("val2", query.valueFor("name2"));

assertEquals("val3", query.valueFor("name3"));

}

Example Multiple
Name/Value pairs

14Agile Network Service Development

public String valueFor(String name) {

String[] pairs = _query.split("&");

for (String pair : pairs) {

String[] nameAndValue = pair.split("=");

if (nameAndValue[0].equals(name))

return nameAndValue[1];

}

throw new RuntimeException(name+" not found");

}

Example Multiple
Name/Value pairs

15Agile Network Service Development

› Write count() returning by the number of query strings for

multiple query strings

Next step?

Agile Network Service Development 16

public void testMultipleNameValuePairs() {

QueryString query = new

QueryString("name1=val1&name2=val2&name3=val3");

assertEquals(3, query.count());

assertEquals("val1", query.valueFor("name1"));

assertEquals("val2", query.valueFor("name2"));

assertEquals("val3", query.valueFor("name3"));

}

Example
multiple count()

17Agile Network Service Development

public int count() {

String[] pairs = _query.split("&");

return pairs.length;

}

But test didn’t pass…

(split returns by the orig. str if no separator found)

public int count() {

if ("".equals(_query)) return 0;

String[] pairs = _query.split("&");

return pairs.length;

}

Example
multiple count()

18Agile Network Service Development

public class QueryStringTest extends TestCase {

public void testOneNameValuePair() {

QueryString query = new QueryString("name=value");

assertEquals(1, query.count());

assertEquals("value", query.valueFor("name"));

}

public void testMultipleNameValuePairs() {

QueryString query =

new ueryString("name1=val1&name2=val2&name3=val3");

assertEquals(3, query.count());

assertEquals("val1", query.valueFor("name1"));

assertEquals("val2", query.valueFor("name2"));

assertEquals("val3", query.valueFor("name3"));

}

public void testNoNameValuePairs() {

QueryString query = new QueryString("");

assertEquals(0, query.count());

}

public void testNull() {

try {

QueryString query = new QueryString(null);

fail("Should throw exception");

}

catch (NullPointerException e) { // expected

}

}

}

Tests

20Agile Network Service Development

public class QueryString {

private String _query;

public QueryString(String queryString) {

if (queryString == null) throw new NullPointerException();

_query = queryString;

}

public int count() {

if ("".equals(_query)) return 0;

String[] pairs = _query.split("&");

return pairs.length;

}

public String valueFor(String name) {

String[] pairs = _query.split("&");

for (String pair : pairs) {

String[] nameAndValue = pair.split("=");

if (nameAndValue[0].equals(name))

return nameAndValue[1];

}

throw new RuntimeException(name + " not found");

}

}

Code

Duplication

Refactor needed

21Agile Network Service Development

Refactoring

› Refactoring is the process of code improvement where
code is re-organised and rewritten to make it more efficient,
easier to understand, etc.

› Refactoring is required because frequent releases mean
that code is developed incrementally and therefore tends to
become messy

› Refactoring should not change the functionality of the code
– Same tests shall pass/fail as before (!!!!!!!!!!)

› Automated testing simplifies refactoring as you can see if
the changed code still runs the tests successfully

22Agile Network Service Development

› Divergent Change/Shotgun surgery

– Unrelated changes affect the same class/Have to modify multiple

classes to support changes to a single idea

› Primitive Obsession/Data Clumps

– High-level design concepts represented with primitive types (instead

of a class)/ Several primitives represent a concept as a group

› Data Class/Wannabee Static Class

– In a class only data with getters and setters/ In a class methods

without meaningful state (quasi static members)

– Combine them

Code smells

23Agile Network Service Development

› Coddling NULLs

– If NULL received as parameter returning by NULL

– Typically indicates a problem that is not properly handled

– Instead of ‘forwarding’ NULL, throw an exception when NULL

received as parameter

› Unless NULL has explicitly defined semantics

› Time Dependency

– Class’ methods must be called in a specific order/

– Half-Baked Objects

› Special case of Time Dependency: first be constructed, then

initialized with a method call, then used

– Typically indicates encapsulation problems

Code smells

24Agile Network Service Development

› Proceed small sequence of small transformation instead of

one large

– Not rewriting

– Code transformation in several small, controllable steps

– Run tests after each small step

How to Refactor

25Agile Network Service Development

public class QueryStringTest extends TestCase {

public void testOneNameValuePair() {

QueryString query = new QueryString("name=value");

assertEquals(1, query.count());

assertEquals("value", query.valueFor("name"));

}

public void testMultipleNameValuePairs() {

QueryString query =

new ueryString("name1=val1&name2=val2&name3=val3");

assertEquals(3, query.count());

assertEquals("val1", query.valueFor("name1"));

assertEquals("val2", query.valueFor("name2"));

assertEquals("val3", query.valueFor("name3"));

}

public void testNoNameValuePairs() {

QueryString query = new QueryString("");

assertEquals(0, query.count());

}

public void testNull() {

try {

QueryString query = new QueryString(null);

fail("Should throw exception");

}

catch (NullPointerException e) { // expected

}

}

}

Tests

26Agile Network Service Development

public class QueryString {

private String _query;

public QueryString(String queryString) {

if (queryString == null) throw new NullPointerException();

_query = queryString;

}

public int count() {

if ("".equals(_query)) return 0;

String[] pairs = _query.split("&");

return pairs.length;

}

public String valueFor(String name) {

String[] pairs = _query.split("&");

for (String pair : pairs) {

String[] nameAndValue = pair.split("=");

if (nameAndValue[0].equals(name))

return nameAndValue[1];

}

throw new RuntimeException(name + " not found");

}

}

Code

27Agile Network Service Development

› Eliminate duplication

› Single method that does the parsing

› The other methods call this rather parsing themselves

› This parser shall be called from constructor and parses the

query string into a HashMap

› But this would be too large step

› Do it step-by-step

› First introduce HashMap to valueFor()

Next step?

Agile Network Service Development 28

public String valueFor(String name) {

HashMap<String, String> map = new

HashMap<String, String>();

String[] pairs = _query.split("&");

for (String pair : pairs) {

String[] nameAndValue = pair.split("=");

map.put(nameAndValue[0], nameAndValue[1]);

}

return map.get(name);

}

After making this refactoring the tests pass

Refactoring Example

29Agile Network Service Development

› Extract the parsing logic into its own method

– parseQueryString()

› Extract Method refactoring technique

Next step?

Agile Network Service Development 30

private HashMap<String, String> parseQueryString() {

HashMap<String, String> map = new HashMap<String,

String>();

String[] pairs = _query.split("&");

for (String pair : pairs) {

String[] nameAndValue = pair.split("=");

map.put(nameAndValue[0], nameAndValue[1]);

}

return map;

}

public String valueFor(String name) {

HashMap<String, String> map = parseQueryString();

return map.get(name);

}

Refactoring Example

31Agile Network Service Development

› The tests passed again

– Small steps -> be surprised if they didn’t

› Key point in refactoring:

– By taking small steps, you remain in complete control of changes,

which reduces surprises

– Or if test fails: you know exactly where the problem is

Refactoring Example

32Agile Network Service Development

› Make parseQueryString() available to every method

– Introduce a _map instance variable to class – that stores the hash

table that can be accessed by every method

Next step?

Agile Network Service Development 33

public class QueryString {

private String _query;

private HashMap<String, String> _map = new

HashMap<String, String>();

...

public String valueFor(String name) {

HashMap<String, String> map = parseQueryString();

return map.get(name);

}

private HashMap<String, String> parseQueryString() {

String[] pairs = _query.split("&");

for (String pair : pairs) {

String[] nameAndValue = pair.split("=");

_map.put(nameAndValue[0], nameAndValue[1]);

}

return _map;

}

}

Refactoring Example

34Agile Network Service Development

› When instance variable introduced, no need for the return

value in parseQueryString()

Next step?

Agile Network Service Development 35

public class QueryString {

private String _query;

private HashMap<String, String> _map = new

HashMap<String, String>();

...

public String valueFor(String name) {

HashMap<String, String> map = parseQueryString();

return _map.get(name);

}

private void HashMap<String, String> parseQueryString() {

String[] pairs = _query.split("&");

for (String pair : pairs) {

String[] nameAndValue = pair.split("=");

_map.put(nameAndValue[0], nameAndValue[1]);

}

return _map;

}

}

Refactoring Example

36Agile Network Service Development

› parseQueryString() now can be called from constructor

Next step?

Agile Network Service Development 37

public class QueryString {

private String _query;

private HashMap<String, String> _map = new

HashMap<String, String>();

public QueryString(String queryString) {

if (queryString == null) throw new

NullPointerException();

_query = queryString;

parseQueryString();

}

...

public String valueFor(String name) {

parseQueryString();

return _map.get(name);

}

...

}

Refactoring Example

38Agile Network Service Development

› Seems like a simple refactoring

– Moved only one line of code

› Yet tests fail

– Parse method didn’t work with an empty string

› This shows why taking small steps is such a good idea

– Because only one line of code was changed, can be known exactly

what had gone wrong

Refactoring Example

39Agile Network Service Development

private void parseQueryString() {

if ("".equals(_query)) return;

String[] pairs = _query.split("&");

for (String pair : pairs) {

String[] nameAndValue = pair.split("=");

_map.put(nameAndValue[0], nameAndValue[1]);

}

}

Refactoring Example

40Agile Network Service Development

› Finally remove parsing from count()

Next step?

Agile Network Service Development 41

› From:

public int count() {

if ("".equals(_query)) return 0;

String[] pairs = _query.split("&");

return pairs.length;

}

› To:

public int count() {

return _map.size();

}

Refactoring Example

42Agile Network Service Development

› Remove _query instance variable that stored the unparsed

query string

› Pass the query string as a parameter

Next step?

Agile Network Service Development 43

public class QueryString {

private HashMap<String, String> _map = new HashMap<String, String>();

public QueryString(String queryString) {

if (queryString == null) throw new NullPointerException();

parseQueryString(queryString);

}

public int count() {

return _map.size();

}

public String valueFor(String name) {

return _map.get(name);

}

private void parseQueryString(String query) {

if ("".equals(query)) return;

String[] pairs = query.split("&");

for (String pair : pairs) {

String[] nameAndValue = pair.split("=");

_map.put(nameAndValue[0], nameAndValue[1]);

}

}

}

Refactoring Example

44Agile Network Service Development

› Perfection is achieved, not when there is nothing more to

add, but when there is nothing left to take away. (Antoine

de Saint-Exupéry)

› Any intelligent fool can make things bigger, more complex

and more violent. It takes a touch of genius and a lot of

courage to move in the opposite direction. (Albert Einstein)

Simple Design

45Agile Network Service Development

1. The system (code and tests together) must
communicate everything you want to communicate

2. The system must contain no duplicate code

3. The system should have the fewest possible
classes

4. The system should have the fewest possible
methods

Simple Design

1. and 2. together: Once and Only Once rule

46Agile Network Service Development

YAGNI – You Aren’t
Gonna Need It
› Avoid speculative coding

– No functionality shall be added early

› Only those that are required by the current requirement (story)

– Requirement may change

– Unnecessary code can remain

› Slow, harder to maintain

– Since they are not needed, they are not well defined and

implemented

– Remove code that’s no longer in use

› It remains in version ctrl system if needed in future again

› One of the hardest things for developers not to do!

– We are all tempted to add functionality now that we are just sure is

going to be needed later

– Extra functionality always slows us down and squanders resources
47Agile Network Service Development

Once and Only Once

› Remove code duplication

– But don’t just eliminate duplication; make sure that every important

concept has an explicit representation in your design

› Rather than expressing concepts with a primitive data type,

create a new type (class)

E.g. instead of representing a Dollars with simple decimal,

create a class

public class Dollars {

private decimal _dollars;

public Dollars(decimal dollars) { _dollars = dollars; }

public decimal AsDecimal() { return _dollars; }

public boolean Equals(object o) {...}

}
48Agile Network Service Development

Once and Only Once
› Although basic data types may seem simpler (one less class),

actually make your design more complex: no place for the

concept

› As a result, when working with that concept, the code may

need to re-implement basic behavior - widespread duplication
– string parsing,

– formatting,

– simple operations

› Though duplication may be only fragments of code, but make

your code hard to change

– For example, if you want negative amounts to be red, all little fragment

of formatting code must be found and fixed

– By starting with a simple but explicit representation of the concept, you

provide a location for future changes to congregate

– Without it, leads to duplication and complex code. 49Agile Network Service Development

Self-Documenting Code

› Simplicity is relative

– If the rest of your team or future maintainers of your software find it

too complicated, then it is

› Use naming conventions that are common for your

language and team

› Use names that clearly reflect the intent of variables,

methods, classes, etc.

› Before using a comment, ask your pair how to make the

code express the idea without needing a comment

› Comments aren’t bad, but they are a sign that your code is

more complex than it needs to be

– Try to eliminate the need for comments when you can

50Agile Network Service Development

Isolate Legacy Code
› When calling legacy functions widespread

– Hard to modify or replace

› Hide behind an interface that you control

– Use adapter classes instead of instantiating legacy classes directly

– Create your own base class that extend the legacy classes instead

of extending them directly

› Isolating legacy components also allows to extend the

features of the component and gives a convenient interface

to write tests against

– Implement adapter class incrementally – support only those

features that are actually needed – not everything

– Write adapter’s interface to match your needs not the component

› Removes duplication but makes code a bit more complex

51Agile Network Service Development

Limit Published
Interfaces

› Published interfaces reduce your ability to make changes

– Once an interface is published it shall not be modified because it is

used in several programs

› Some teams treats internal interfaces as published

– It limits the ability of refactoring

– Non-published interfaces can be changed – with their callers

› Each published interface is a design decision commitment

– But may be changed in future

– Limit the number of interfaces

› The smaller the interface, the better

– Much easier to add new elements to your API than to remove or

change incorrect elements.

› 52Agile Network Service Development

Incremental Design
and Architecture

› No time for creating a well-designed plan

– Incremental or evolutionary design

› Similar concepts as in TDD on all levels of design

› When first create an element (method, class, architecture)

– Be as concrete and specific as can be

– Regardless of how simple it is and how to solve future problems

› The second time work with that element, modify the design to

make it more general

– But only general enough to solve that problems it needs to solve, etc.

› Breakthroughs

– When larger refactor needed

53Agile Network Service Development

Risk-Driven
Architecture

› Risk-Driven Architecture

–Although designing for the present, it’s OK to

think about future problems. Just don’t

implement any solutions to stories that you

haven’t yet scheduled

–Although it would be inappropriate to implement

features your customers haven’t asked for, you

can direct your refactoring efforts toward

reducing risk

54Agile Network Service Development

Incremental vs
up-front design

› Isn’t incremental design more expensive than up-front

design?

› Just the opposite

– Incremental design implements just enough code to support the

current requirements, you start delivering features much more

quickly with incremental design

– When a predicted requirement changes, you haven’t coded any

parts of the design to support it, so you haven’t wasted any effort

55Agile Network Service Development

Performance
Optimization

› Nowadays computers are complex

– Several internal units, parallelism, pipelines, caches

› Hard to calculate the performance

– Only with measurement

– Performance tests are end-to-end tests

› They have to measure the performance of the whole service

– If performance test fails

› Modify system

› If better keep, otherwise throw

› Once performance test passes, stop: increase the performance

more only if needed!

› If refactoring – run performance tests again

56Agile Network Service Development

Performance
Optimization

› Major drawbacks of (performance) optimization

– Leads to complex, hard-to-understand and maintain code

– Takes time away from delivering new feature (choice to optimize is

a choice not to do something else)

– Neither is in the customer’s interest

– Optimize only if serves a real, measureable need

› Potential performance problem

– Explain to customer in terms of business tradeoffs and risks

– Shall be the (business) decision of the customer

57Agile Network Service Development

Estimation of a
Performance story

› Similarly to bug-fixing, the duration mostly

depends on how long it takes to find the cause of

the problem

–Can be hard to estimate

–Time-box the estimation

› If not enough, write a new story

58Agile Network Service Development

