
MBT –
Model-Based

Testing

Gusztáv Adamis
adamis@tmit.bme.hu

› Manual execution

– Slow

– Time consuming

– Documentation

– E.g. GUI test

› Though several solutions of partly

automating (Selenium, Jasmine)

› In most of the cases automation

is necessary to achieve

acceptable coverage in

acceptable time frame

Manual Testing

Agile Network Service Development 2

› Test programs (scripts) to write

– Time

› Test execution tool to develop

– Time

› But when they are ready, fast

execution

› Problems:

– Test development

– Test validation

– Test maintenance

Automated Testing
(Test Scripts)

Agile Network Service Development 3

› Automatic (abstract) test

case generation

– Different strategies, goals

– Model shall be verified,

generated tests are correct

– Any change in specification ->

Re-generate the tests

› No need to touch the test

scripts

› Easier maintenance

– Problem:

› Test Harness

› Good only for ‘green field’

test development

Model-Based Testing

Agile Network Service Development 4

› Measuring the adequacy of a test suite

– Coverage

› Deciding when to stop test generation

› Typically 100% coverage is not possible

– Time consuming

– Non-reachable states

› Theoretically – wrong model

› Practically – complex guards, lot of variables

Test Generation
Algorithms

Agile Network Service Development 5

› Most of them can also be applied to code, but now for

MODEL

– Not the same

– Both shall be tested

› Structural Model Coverage

› Data Coverage

› Fault-Model

› Requirements-Based

› Explicit Test Case Specification

Classification of Test
Selection Criteria

Agile Network Service Development 6

› For models in (E)FSM, UML, OCL, etc.

– Decisions, Pre/Post conditions

context SmartCard::verifyPin(p:PIN_CODES):MESSAGES

post:

if pinTry = 0 then

result = MESSAGES::NO_MORE_TRIES

else

if (p=pin or statusPin=PINSTATUS::DISABLE) then

result = MESSAGES::SUCCESS

else

result = MESSAGES::ERROR

endif

endif

Control-Flow-Oriented
Coverage Criteria

Agile Network Service Development 7

› Statement Coverage (SC)

– execute every reachable statement

› Decision (or Branch) Coverage (DC)

– each reachable decision is made true by some tests and false by

other tests

› Condition Coverage

– each condition in the program is tested with a true result and also

with a false result

› Path Coverage (PC)

– execute every satisfiable path through the control-flow graph

– generally impossible to reach (loops!)

Control-Flow-Oriented
Coverage Criteria

Agile Network Service Development 8

› Definition (assignment to) and use of variables

– Data Flow Graphs

– Definition-use paths

› All-Defs

– test at least one def-use pair (dv, uv) for every definition dv, that is, at

least one path from each definition to one of its feasible uses

› All-Uses

– test all def-use pairs (dv, uv). (testing all feasible uses of all defs)

› All-Def-Use-Paths

– test all def-use pairs (dv, uv) and to test all paths from dv, to uv

– Practically unrealistic

Data-Flow-Oriented
Coverage Criteria

Agile Network Service Development 9

› For (E)FSM, LTS, UML state charts, etc. models

› All-states Coverage

– Every state of the model is

visited at least once

› ACG ACE

Transition-Based
Coverage Criteria

Agile Network Service Development 10

› All-transitions Coverage

– Every transition of the model must be traversed at least once

– ACEFG + BD

– ACEFG + BDG (if shall end at final state)

ABCED or ABCEDCD

D is one or two transactions?

Transition-Based
Coverage Criteria

Agile Network Service Development 11

› All-transition-pairs Coverage

– Every pair of adjacent transitions in the FSM or statechart model

must be traversed at least once

› For S2:

– AC+AD+BC+BD

Transition-Based
Coverage Criteria

Agile Network Service Development 12

› All-loop-free-paths Coverage:

– Every loop-free path must be traversed at least once

– ACG + ADG + BCG + BDG

› Does not cover all transitions or even all states!

› All-one-loop-paths Coverage

– Every path containing at most two repetitions of one (and only one)

state must be traversed at least once

– All the loop-free paths and all the paths that loop once

› 4*3 = 12 test cases

Transition-Based
Coverage Criteria

Agile Network Service Development 13

› All-round-trips Coverage

– Similar to previous, but requires each loop only once and not with all

possible preceding/following paths

– Weaker, but more realistic to achieve in practice

› E.g.: ACE + ACF + ACG + AD + B

› All-paths Coverage

– Every path must be traversed at least once (exhaustive testing)

– If loop: infinite number of paths

– ACG+ADG+BCG+BDG+ACEG+ACEEG+….

Transition-Based
Coverage Criteria

Agile Network Service Development 14

› All-loop-free-paths, All-one-loop-paths, All-round-trips are

inadequate on their own, since they do not guarantee to

cover all transitions or even all states

– Extreme example: in the first state we have to take a loop at least

twice, nothing else than the first state is reachable…

› In practice, the All-transition Coverage is the minimum to

reach

Transition-Based
Coverage Criteria

Agile Network Service Development 15

› For choosing a few good data values to use as test inputs

when there is a huge number of possible input values

› Two extremes:

– One-value: simply requires to test at least one value from the

domain D. Often too simple.

– All-values: requires to test every value in the domain D.

› This is not practical if D is large (e.g., 0. . 999999), but when D is

small, such as an enumerated type, it can be useful to test all

possibilities

data Coverage Criteria

Agile Network Service Development 16

› Choose test input values at the boundaries of the input

domains

– Lots of faults in the SUT are located at the boundary between two

functional behaviours

Speed= 50, Rain_level = 6

Speed= 50, Rain_level = 10

Speed= 300, Rain_level = 6

Speed= 300, Rain_level = 10

Boundary Value Testing

Agile Network Service Development 17

wiper slow

wiper fast

If Speed >= 50

OR Rain_level > 5

Speed := 0..300

Rain_level := 0..10

› Random value generation can be acceptable

– If all with the same probability

– Random value generation according to a given distribution

› Partition-based testing

› Experiences show that the efficiency of both is ~same, but

random is much easier to implement

› Boundary testing is enough if we want to have the minimal

number of tests, but if we want more

– Suitable also for non-ordered types, e.g. enumeration

› Car colour: silver 24%, black 17%, …

Statistical Data
Coverage

Agile Network Service Development 18

› Pairwise testing is based on the assumption that most

defects are created as a result of no more than two test

parameters (test values) being in a certain combination

› E.g:

– Destinations: Canada, Mexico, USA

– Class: Coach, Business, First

– Seat: Aisle, Window

› Exhaustive testing:

– 3*3*2 = 18 combinations

Pairwise testing

Agile Network Service Development 19

› Assume: USA, Coach

causes the problem

› Pairwise test

generation:

– Test 18:

› USA, First: in 9,

› USA, Window: in 15,

› First, Window: in 17

– Test 18 is redundant,

etc.

Pairwise testing

Agile Network Service Development 20

Test Destination Class Seat Preference

1 Canada Coach Aisle

2 Mexico Coach Aisle

3 (defect!) USA Coach Aisle

4 Canada Business Class Aisle

5 Mexico Business Class Aisle

6 USA Business Class Aisle

7 Canada First Class Aisle

8 Mexico First Class Aisle

9 USA First Class Aisle

10 Canada Coach Window

11 Mexico Coach Window

12 (defect!) USA Coach Window

13 Canada Business Class Window

14 Mexico Business Class Window

15 USA Business Class Window

16 Canada First Class Window

17 Mexico First Class Window

18 USA First Class Window

› 9 tests instead of 18

› Still finds the problem

Pairwise testing

Agile Network Service Development 21

Number Destination Class
Seat

Preference

1 Canada Coach Aisle

3

(defect!)
USA Coach Aisle

5 Mexico
Business

Class
Aisle

8 Mexico First Class Aisle

9 USA First Class Aisle

11 Mexico Coach Window

13 Canada
Business

Class
Window

15 USA
Business

Class
Window

16 Canada First Class Window

› More effective if much higher combinations

– If 10 variables with 5 values each

› 510=9 765 625 exhaustive tests

› Only 44 pairwise tests

– If 75 binary variables

› 275 = 37 778 931 862 957 161 709 568 exhaustive tests

› Only 28 pairwise tests

› Complicated test generation algorithms

› N-wise coverage

– If suppose that the problem depends on N values instead 2

– Number of tests rapidly grows as N increases

– All-triples can still be practical, but all-quadruples are ~not

Pairwise testing

Agile Network Service Development 22

› Pre-specified faults

– Typically frequently occurred ones

– Mutation operators: e.g. substitute + with – in expressions

– Generate tests for each mutant of the original program,

› Design a test that distinguishes that mutant from the original

program

› The resulting test suite is therefore able to show, which faults are

NOT in the SUT

- Fault-finding Power

Fault-Based Criteria

Agile Network Service Development 23

› High-level, testable statements of functionalities

› Each requirement shall be tested (e.g. in acceptance tests)

› In MBT two typical solutions:

– 1. Record the requirements inside the behavior model (as

annotations on various parts of the model) so that the test

generation process can ensure that all requirements have been

tested

– 2. Formalize each requirement and then use that formal expression

as a test selection criterion to drive the automated generation of one

or more tests from the behavior model

› Explicit test case specifications

Requirements-Based
Criteria

Agile Network Service Development 24

› Some explicit requirements are given in the model

– E.g: Test shall contain this state

› Generate test

– For typical or for less typical cases

– Just for a given service

– Etc.

Explicit Test Case
Specification

Agile Network Service Development 25

Test Selection in an
MBT ToOl (Conformiq)

Agile Network Service Development 26

Test Selection in an
MBT ToOl (Conformiq)

Agile Network Service Development 27

Agile Network Service Development 28

MBT At different
levels

Agile Network Service Development 29

