Key Establishment

BMEVITMAV52 Information and Network Security feher.gabor@tmit.bme.hu

Key establishment

- Key establishment definition: a shared secret becomes available to two or more parties, for subsequent cryptographic use
 - The established keys are vary on subsequent executions of the protocol (dynamicity)
 - The shared secret is often used as a session key protecting the communication
 - Limit the available ciphertext
 - Limit the exposure caused by compromised keys
 - Keys are created on-demand (No storing required)
 - Independent communication sessions
 - Key transport and key agreement
- Authenticated key establishment protocol: Establish a shared secret with an authenticated party

Key transport and agreement

- Key transport definition: one party creates or otherwise obtains a secret value, and securely transfers it to the other(s).
- Key agreement definition: a shared secret is derived by two (or more) parties as a function of information contributed by, or associated with, each of these, (ideally) such that no party can predetermine the resulting value.

Key authentication and confirmation

- (Implicit) Key authentication definition: one party is assured that no untrusted third party may gain access to a particular secret key
 - Key authentication is independent of the actual possession of such key by the second party, or knowledge of such actual possession by the first party; in fact, it need not involve any action whatsoever by the second party
- Key confirmation definition: one party is assured that a second party (possibly unidentified) actually has possession of a particular secret key
 - Identify the key
 - Can be easily added (keyed hash, hash on key)
- *Explicit key authentication* definition: is the property obtained when both (implicit) key authentication and key confirmation hold

Characteristics

- Nature of authentication
 - Entity authentication
 - Key authentication
 - Key confirmation
- Reciprocity of authentication
 - Unilateral or mutual
- Key control
 - A party control the value of a key or no party can predict the value of the key
- Key freshness
 - The key is never used before

Characteristics (cntd.)

- Efficiency
 - Number of messages required
 - Number of bits transferred (bandwidth)
 - Complexity of computations
 - Precomputation possibility
- Third party requirements
 - On-line, off-line or no third party
 - Degree of trust required in the third party
- Type of certificate is used (if any)
- Non repudiation
- System setup
 - Initial key setup

Adversaries in key establishment

- The underlying cryptographic mechanisms used (encryption, hash, digital signatures, ...) are assumed to be secure
 - Attacking the protocol itself (The adversary is not a cryptanalyst)
- Passive attack
 - Record and analyze protocol messages
- Active attack
 - Modifies, remove or inject messages

Adversaries in key establishment (cntd.)

- Messages are transported over unprotected channel
 - record, alter, delete, insert, redirect, reorder, and reuse past or current messages, and inject new messages
- Model: parties receiving messages exclusively via intervening adversaries
 - relaying messages unaltered to the intended recipients, or carrying out (with no noticeable delay) any of the above actions

Attack types

- Deduce a session key using information gained by eavesdropping
- Participate covertly in a protocol initiated by one party with another, and influence it,
- Initiate one or more protocol executions (possibly simultaneously), and combine (*interleave*) messages from one with another
- Deceive a legitimate party regarding the identity of the party with which it shares a key, without being able to deduce the session key itself

Perfect forward secrecy

- Perfect forward secrecy definition: compromise of longterm keys does not compromise past session keys
 - Also known as break-backward protection
 - Previous traffic is locked securely in the past
- Known-key attack definition: compromise of past session keys allows
 - either to compromise future session keys (passive adversary) or impersonation in the future (active adversary)
 - compromise of session keys may be easier than that of longterm keys
 - time extensive cryptanalytic effort may uncover past session keys

Key transport protocols

- Based on symmetric encryption
 - Serverless
 - With server
- Based on asymmetric encryption
 - With encryption
 - Encryption + signing

Point-to-point key update

- Based on a previously shared long-term, symmetric key
 - Participant: A,B
 - r_A: random number, t_A: timestamp, n_A: sequence number
 - Key: K
 - Session key: S
- Key transport with one pass

 $- \hspace{0.2cm} (1) \hspace{0.2cm} A \rightarrow B \hspace{0.2cm} \vdots \hspace{0.2cm} \{r_A\} K$

- Implicit key authentication. The new session key is r_A
- Additional fields
 - $\hspace{0.2cm} (1') \hspace{0.1cm} A \rightarrow B \hspace{0.1cm} \vdots \hspace{0.1cm} \{ r_{A,} \hspace{0.1cm} t_{A} \hspace{0.1cm}^{*} \hspace{0.1cm}, \hspace{0.1cm} B^{*} \} K$
 - Timestamp provides freshness
 - B* prevent undetectable immediate message replay back to A
 - Redundancy to provide explicit key authentication (B*)

Point-to-point key update (cntd.)

- Key transport (cntd.)
 - If both party wants to contribute to the session key
 - (1) $A \rightarrow B : \{r_A\}K$
 - (2) $A \leftarrow B : \{r_B\}K$
 - The session key is $f(r_A, r_B)$
- Key transport with challenge-response
 - (1) A \leftarrow B : n_B
 - (2) $A \rightarrow B : \{\overline{r_A}, n_B, B^*\}K$
 - n_B replace the timestamp
 - If both party wants to contribute to the session key
 - (1) $A \leftarrow B : n_B$
 - $-\quad (2)\ A\rightarrow B:\{r_A,\ n_A,\ n_B,\ B^*\}K$
 - $(3) A \leftarrow B : \{r_B, n_B, n_A, A^*\}K$
 - The session key is $f(\boldsymbol{r}_A,\boldsymbol{r}_B)$
- Properties of point-to-point key update
 - Fail completely if long-term key K is compromised
 - Subject to replay attacks
 - Message modification can be detected with a built-in data integrity mechanism

Authenticated Key Exchange Protocol 2 (AKEP2)

- Based on a previously shared longterm, symmetric keys K and K'.
 - $-h_{K}$ is a MAC for entity authentication
 - $-h_{K'}$ is a hash to generate the session key

(1)
$$A \rightarrow B : r_A$$

(2) $A \leftarrow B : (B, A, r_A, r_B), h_K(B, A, r_A, r_B)$
(3) $A \rightarrow B : (A, r_B), h_K(A, r_B)$
The session key is $h_K'(r_B)$

 There is no need to encrypt the base parameters of the session key

Shamir's no-key protocol

- Key transport without a priori shared keys
 - Using symmetric techniques (but involves modular exponentiation)
 - p prime; a, b random numbers
 - $-1 \le a, b \le p-2$, each coprime to p-1
 - K is random, $1 \le K \le p-1$
 - $\hspace{0.2cm} (1) \hspace{0.1cm} A \rightarrow B : K^a \hspace{0.1cm} mod \hspace{0.1cm} p$
 - (2) A \leftarrow B : (K^a)^b mod p
 - (3) A → B : $((K^a)^b)^{1/a} \mod p$
 - K is the session key

B get K as (((K^a)^b) ^{1/a}) ^{1/b}

 The Shamir's no-key protocol can use ciphers instead of modular exponentiation, where the cipher's encryption and decryption order is interchangeable. But Vernam cipher (XOR) can not be used!

Wide Mouth Frog protocol

• Key transport through a trusted third party

- The server stores all the keys of the clients
 - $\quad (1) \text{ A} \rightarrow \text{S}: \text{A}, \{t_{\text{A}}, \text{K}_{\text{AB}}, \text{B}\}\text{K}_{\text{AS}}$
 - $-\quad (2) \ S \rightarrow B: \{t_S, \, K_{AB}, \, A\}K_{BS}$
 - Previously shared long-term keys
 - Timestamps required
 - Party A controls the key
- Security flaw in wide mouth frog:
 - Adversary M performs a man-in-the-middle attack on the run of the protocol: A \to M \to S \to M \to B
 - $-\quad (1a) \; A \rightarrow M : A, \, \{t_A, \, K_{AB}, \, B\}K_{AS}$
 - $-\quad (1b)\;M\rightarrow S:A,\,\{t_A,\,K_{AB},\,B\}K_{AS}$
 - $\quad \text{(2a) } S \rightarrow M : \{t_S,\,K_{AB},\,A\}K_{BS}$
 - · Now the adversary can repeat the key transport several times
 - $-\quad (1b')\:M\to S:B,\,\{t_{Si\text{-}1},\,K_{AB},\,A\}K_{BS}$
 - $\quad (2a') \: S \to M : \{t_{Si}, \: K_{AB}, \: B\} K_{AS}$
 - And can reinit K_{AB}
 - $-\quad (2b)\;M\to A:\{t_{Si},\;K_{AB},\;B\}K_{AS}$

Looks like B wants to initiate a key transport

Needham-Schroeder protocol

• Key transport using a trusted third party, with entity authentication and key confirmation

- Independent of timestamps

$$\begin{array}{l} -(1) \ A \rightarrow S : A, B, n_{A} \\ -(2) \ A \leftarrow S : \{n_{A}, K_{AB}, B, \{K_{AB}, A\}K_{BS}\}K_{AS} \\ -(3) \ A \rightarrow B : \{K_{AB}, A\}K_{BS} \\ -(4) \ A \leftarrow B : \{n_{B}\}K_{AB} \\ -(5) \ A \rightarrow B : \{n_{B}-1\}K_{AB} \end{array}$$

$$\begin{array}{l} \text{This part comes from the previous message} \\ \text{Key confirmation} \end{array}$$

The server generates the session key: K_{AB}

Flaw in Needham-Schroeder protocol

- The server generates fresh keys, but party B is unable to verify it
 - If one session key is compromised, B can be tricked to use that key (from step 3):

$$- (3) M → B : {k, A}KBS$$
$$- (4) M \leftarrow B : {nB}k$$
$$- (5) M → B : {nB-1}k$$

Recorded message, key *k* is compromised

Otway-Rees protocol

- Authenticated key transport using a trusted third party. Key authentication and key freshness
 - Using a transaction authentication ID: ID

- (1) A \rightarrow B : ID, A, B, {n_A, ID, A, B}K_{AS}

- (2) B \rightarrow S : ID, A, B, {n_A, ID, A, B}K_{AS}, {n_B, ID, A, B}K_{BS}
- (3) B \leftarrow S : ID, {n_A, K_{AB}}K_{AS}, {n_B, K_{AB}}K_{BS}

- (4) A \leftarrow B : ID, {n_A, K_{AB}}K_{AS}

 Can be extended with key confirmation and entity authentication. Modified 4th message + a new one

$$- \text{ (4) } A \leftarrow B \text{ : ID, } \{n_A, \, K_{AB}\}K_{AS}, \, \{B, \, n_B\}K_{AB}$$

$$- (5) A \rightarrow B : \{n_B - 1, A\} K_{AB}$$

Key transport using PK encryption

- One-pass key transport by public-key encryption
 - The session key is sent encrypted by the other party's public key
 - $-\text{ (1) } A \rightarrow B \text{ : } \{k\} P_B$
 - Reply attacks in the case of compromised keys can be avoided using a timestamp $-(1') A \rightarrow B : \{k, t_A\}P_B$

Needham-Schroeder PK protocol

• Mutual entity authentication and key transport

 $- (1) A \rightarrow B : \{k_1, A\}P_B$ $- (2) A \leftarrow B : \{k_1, k_2\}P_A$ $- (3) A \rightarrow B : \{k_2\}P_B$

- Encryption with the public key of the other party: {} P_X
- The session key is a function of k_1 and k_2
- Encryption in step 3 can be eliminated

$$\label{eq:rescaled_eq_alpha} \begin{split} &-(1) \: A \to B : \{k_1, \: A, \: n_A\} P_B \\ &-(2) \: A \leftarrow B : \{k_2, \: n_A, \: n_B\} P_A \\ &-(3) \: A \to B : \: n_B \end{split}$$

Protocols with encryption + signing

- Provides source authentication
 - Encrypting signed keys
 - (1) A \rightarrow B : {k, t_A*, {B, k, t_A*}S_A}P_B
 - Timestamp is optional
 - B in the signature prevents B to send the key to other parties
 - Disadvantage: large information to protect
 - Encrypting and signing separately - (1') A \rightarrow B : {k, t_A*}P_B, {B, k, t_A*}S_A

– Signing encrypted keys – (1") A \rightarrow B : t_A* , {A, k}P_B, {B, t_A*, {A, k}P_B}S_A

Key arrangement

- Based on asymmetric techniques
 - Diffie-Hellman (-Merkle) key agreement (basic setup) 1976
 - Prime p and generator g, $2 \le g \le p-2$
 - (1) A \rightarrow B : g^x mod p
 - $(2) A \leftarrow B : g^y \mod p$
 - -x any y are random, $1 \le x, y \le p-2$
 - The session key is $K = (g^x)^y \mod p = (g^y)^x \mod p$
 - Protect only from eavesdropping , but not from active attacks
 - No entity or key authentication

Diffie-Hellman key exchange example

- Alice and Bob agree on p=23 and g=5
 - Alice select x=6
 - Alice sends $5^6 \mod 23 = 8 (g^x \mod p)$
 - Bob select y = 15
 - Bob sends $5^{15} \mod 23 = 19 (g^{y} \mod p)$
 - Bob computes the session key (g^{xy} mod p)
 - $8^{15} \mod 23 = 2$
 - Alice computes the session key (g^{yx} mod p)
 - $19^6 \mod 23 = 2$

Station-to-station protocol (STS)

 The three pass variation of the Diffie-Hellman protocol. With mutual entity authentication and mutual explicit key authentication.

$$-$$
 (1) A \rightarrow B : g^x mod p

- (2) A
$$\leftarrow$$
 B : g^y mod p, {{g^x, g^y}S_B}E_K

- $\text{ (3) } A \rightarrow B \text{ : } \{ \{g^x, \, g^y\} S_A \} E_K$
- There is digital signature + using the session key
- Moreover identities of A and B are protected
- Encryption can be avoided using MAC or alternatively signing the hash of the key

Secret sharing

- Multi-party key establishment protocols
 - Originally: enhanced reliability without increased risk
 - Gating the critical action on cooperation of t of n users
 - Secret is divided into shares
 - Specific subset of the shares enable to reconstruct the key
 - Usually a trusted device is necessary to combine the shares

Shamir's threshold scheme

- Based on polynomial interpolation
- y=f(x) of degree t-1 is uniquely defined by t point (x_i, y_i)
 S is the secret that should be distributed among n users
 - p is a prime, p > max(S, n)
 - $-a_0 = S, a_1, \dots a_{t-1}$ random coefficients, $0 \le a_i \le p-1$

$$- f(x) = a_0 + a_1 x + a_2 x^2 + a_3 x^3 + \dots + a_{t-1} x^{t-1}$$

 $-S_i = f(i)$ (or any n distinct point)

 Any t shares reveal the secret using the Lagrange interpolation (S = f(0))

$$f(x) = \sum_{i=1}^t y_i \prod_{1 \le j \le t, j \ne i} \frac{x - x_j}{x_i - x_j}.$$

Information and Network Security

Shamir's threshold scheme (cntd.)

- Properties
 - Perfect: Given knowledge of any t 1 or fewer shares the shared secret remain equally probable
 - Ideal: The size of one share is the size of the secret
 - New shares (for new users) may be computed and distributed without affecting shares of existing users
 - Unlike many cryptographic schemes, its security does not rely on any unproven assumptions

References

 Alfred J. Menezes, Paul C. van Oorschot and Scott A. Vanstone, "Handbook of Applied Cryptography", CRC Press, ISBN: 0-8493-8523-7

- http://www.cacr.math.uwaterloo.ca/hac/

 Wikipedia - The free encyclopedia – http://www.wikipedia.org/