#### **Digital Signatures**

BMEVITMAV52 Information and Network Security feher.gabor@tmit.bme.hu

# **Digital signature**

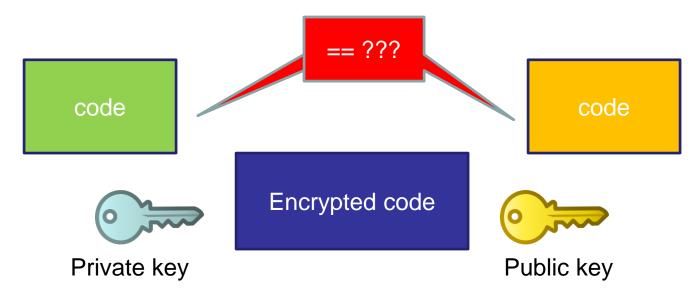
- Message authentication
  - Check whether the message is authentic
  - Check whether the sender is authentic
- Based on public-key cryptography
  - The sender's private key is used to create the signature
  - The sender's public key is used to verify the signature



Everybody knows the public key

# **Digital signature**

- Successful decryption with the public key means that the encryption was done with the private key
  - Authenticate the key (sender)
  - Authenticate the decrypted text



## Hash and sign

- Since public-key encryption is slow, not the whole message, but only its representative image (the hash code) is authenticated
  - Due to hash collisions the message can be fraudulent
    - Due to the birthday attack the complexity is only  $2^{n/2}$
- Transfer the message + the signature

### RSA signature scheme

- 1. Create public and private keys: e, d, n
  - $n = p \cdot q, \phi = (p-1)(q-1)$
  - $-1 < e < \phi$ , gcd(e,  $\phi$ ) = 1
  - $-1 < d < \phi$ , e·d  $\equiv 1 \mod \phi$
- 2. Signature generation
  - -m = hash(Message), 0 < m < n-1
  - Signature:  $s = m^d \mod n$
- 3. Signature verification
  - $-m = s^e \mod n$
  - If m = hash(Message) then signature is valid

## ElGamal signature algorithm

- Create public and private keys
  - p prime, g is generator
  - Select random a:  $1 \le a \le p-2$ , and calculate A =  $g^a \mod p$
  - Public key: p,g,A Private key: p,g,a
- Signature generation
  - Select random k,  $1 \le k \le p-2$  and gcd(k,p-1)=1
  - Calculate R:  $R = g^k \mod p$
  - Calculate S:  $S = (k^{-1}(h(m)-aR)) \mod (p-1)$ 
    - h is a hash function
    - If S would be 0 then repeat with an other k
- Signature verification

 $-g^{H(m)} \equiv A^R R^S \pmod{p}$ 

- Proof:
  - $h(m) \equiv aR + kS \pmod{p-1}$ , using Fermat's little theorem:
  - $g^{h(M)} \equiv g^{aR}g^{kS} \equiv A^{R}R^{S} \pmod{p}$
- p, g parameters can be shared in the system

#### Digital signature algorithm (DSA)

- Similar to ElGamal
  - The hash function is the SHA-1
  - Use 160 and1024 bit primes
- Public and private key generation
  - q is a 160 bit prime, p is 1024 bit prime and  $p=q\cdot z+1$  for some z
  - Choose h, where 1 < h < p-1 such that  $g=h^z \mod p > 1$ , choose random a
  - $A = g^a \mod p$
  - Public key: p, q, g, A and private key: p, q, g, a
- Signature generation:
  - Choose random k, 1 < k < q
  - $R = (g^k \mod p) \mod q$
  - $S = (k^{-1}(SHA1(m)+ar) \mod q$
- Signature verification
  - Calculate  $w = S^{-1} \mod q$
  - $R' \equiv (g^{(SHA1(m) \cdot w) \mod q} \cdot A^{(R \cdot w) \mod q}) \mod p \pmod{q}$
  - Valid if R' = R
- p, q, g parameters can be shared in the system

#### References

 Alfred J. Menezes, Paul C. van Oorschot and Scott A. Vanstone, "Handbook of Applied Cryptography", CRC Press, ISBN: 0-8493-8523-7

- http://www.cacr.math.uwaterloo.ca/hac/

 Wikipedia - The free encyclopedia – http://www.wikipedia.org/