
Cryptographic Hash

BMEVITMAV52

Information and Network Security

feher.gabor@tmit.bme.hu

2018-19.1 Information and Network Security 2

Conventional hashing

• Conventional hash functions (bucket hashing)

– Larger domains are mapped to smaller ranges

• Speed up data retrieval

• Reduce memory footprint

• Collisions reduce efficiency

2018-19.1 Information and Network Security 3

Cryptographic hashing

• Cryptographic hash functions
– Creating a representative image

• Compact representative image

– Imprint, digital fingerprint, message digest

• Used for data integrity protection and authentication

• Collisions make the hash unsecure

– Message -> hash (hash-code, hash-result, hash-

value)

2018-19.1 Information and Network Security 4

Hash functions

• From any sized input, provide a fixed length
string

• Many-to-one function
– There are collisions

• Two input has the same output with the probability of 2-n

– Independent of the size of the input (it should be!)

• Minimum requirements
– Compression

• Arbitrary length -> finite length

– Ease of computation

2018-19.1 Information and Network Security 5

Size of the hash output

• Hash collision: 2-n

– Collision should be less than 1:264 n = 64 ???

• Birthday attack
– The birthday paradox states that if there are 23

people in a room then there is a chance of more than
50% that at least two of them will have birthday on the
same day (For 60 or more people, the probability is
greater than 99%)

• Paradox, since 23 seems to be too small

– Using it on hash functions, generating N bit hash
values there is a chance that there is a collision
among 2N/2 randomly chosen messages

– n should be 128 or 160 to defeat birthday attack

no!

2018-19.1 Information and Network Security 6

Hash function groups

• MDC
– Modification detection code

• Manipulations detection code or
message integrity code

• Provide a representative image

– OWHF: One way hash functions
• Find and input for the specified

hash value is difficult

– CRHF: Collision resistant hash
function

• Find two input that have the
same hash value is difficult

• MAC
– Message authentication code

• The Integrity and source
authentication

Hash functions

Unkeyed Keyed

MDCs other MACs other

OWHF CRHF
Preimage

resistant

2 nd preimage

resistant

Collision

resistant

2018-19.1 Information and Network Security 7

Unkeyed hash functions

• h(x)=y and h(x’)=y’

• Preimage resistance (one-way)
– Computationally infeasible to find preimage x’ that h(x’)=y for a

given y

• 2nd preimage resistance (weak collision resistant)
– Computationally infeasible to find a second preimage that has

the same output. For a given x, where h(x)=y, find x’ where
h(x’)=y

• Collision resistance (strong collision resistant)
– Computationally infeasible to find any two distinct input which

have the same output h(x) = h(x’)

2018-19.1 Information and Network Security 8

Collision resistance

• Collision resistance implies 2nd preimage resistance
– Proof: Assume h is collision resistant but not 2nd preimage

resistant

• For a given x one can find x’ , where h(x)=h(x’)

• x and x’ a collision pair

• Collision resistance does not guarantee preimage
resistance
– Proof: assume g is collision resistant with output of n bit

• Output of the h hash function is n+1 bit:

– If x is n bit long: h(x) =1|x

– Otherwise: o|g(x)

• h is also collision resistant

• h is not preimage resistant

2018-19.1 Information and Network Security 9

Iterated hash functions

• Input is divided into fixed length
blocks
– Use padding

• Padding with 0s

• Padding with 1 then 0s

• f is the compression function
– Hi=f(Hi-1,xi)

– n bit chaining variable

– H0 is the IV
• Should be known at the other

side

• g is an optional transformation
– From n bit produces m bit

2018-19.1 Information and Network Security 10

Merkle-Damgård strengthening

• MD-strengthening

– Before hashing, append length block,

containing the binary representation of the

input’s length

• Presumes length < 2block size

– Any collision resistant compression function

can be extended to a collision resistant hash

function

• Using the iterated approach

2018-19.1 Information and Network Security 11

Cascading hash functions

• If h1(x) and h2(x) are collision resistant

hash functions then h(x) = h1(x)||h2(x) is

also a collision resistant hash function

– Increase the strength of the hash function

2018-19.1 Information and Network Security 12

Block cipher based hash functions

• Usually block cipher is present (SW or HW)

• h is an iterated hash function. In each iteration f

perform s block encryptions to get the

successive n-bit block

– The rate of h is 1/s

– k: key size

– n: block size

– m: hash size

2018-19.1 Information and Network Security 13

Single-length MDCs

• Components:

– n-bit Block cipher

– Function g that maps n-bit blocks to the key

– Fixed initial value (IV) for the block cipher

2018-19.1 Information and Network Security 14

Double-length MDCs (MDC-2)

• More encryption operation

during one iteration

• MDC-2:

– Use DES

– Combination of Matyas-

Meyer-Oseas

– Key generation:

• g(U)=u110u4u5u6u7u9u10..u63

• g’(U)=u101u4u5u6u7u9u10..u63

2018-19.1 Information and Network Security 15

Double-length MDCs (MDC-4)

• 2 MDC-2 blocks

2018-19.1 Information and Network Security 16

MD4 and MD5

• Designed “from scratch”

– Optimized performance

• Message Digest 4 – MD4

– Ron Rivest – 1990

– 128 bit hash function (512 bit internal blocks)

– Designed for 32 bit architectures

– Goal: breaking would require roughly brute-force effort – FAILED (1991)

• Message Digest 5 – MD5

– Ron Rivest – 1991

– Strengthened MD4

– Widespread use

– 128 bit hash function (512 bit internal blocks)

– Flaws:
• 1996: design flaw found (not fatal)

• 2004: collision using a cluster computer

• 2006: collision within one minute on a notebook (tunneling)

MD5 algorithm

• Padding to 512 bit blocks

– Bit 1, followed by 0s

– The last 64 bit is the

message length

• Iterations

– 4 rounds, 16 repetition

– 128 output: 4 states (32 bit)

– Nonlinear function F

– M: message in 32 bits

– K: operation dependant key

2018-19.1 Information and Network Security 17

2018-19.1 Information and Network Security 18

SHA algorithms

• SHA (SHA-0) was published in 1993

– Flaw: collision in 239 steps (2005)

• Secure Hash Algorithm – SHA-1

– U.S. National Security Agency – 1995

– Based on MD4

– NIST proposal

– 160 bit hash function (512 bit internal blocks)

– Flaw: collision in 269 steps (2005), 261 steps (2012)

• SHA-2: SHA-224, 256, SHA-384, SHA-512

– Same Merkle-Damgarg engine as SHA-1

– Still considered secure

• SHA-3: Keccak

– Alternative engine

2018-19.1 Information and Network Security 19

Keyed hash funcitons

• Primary purpose: message authentication
– MAC: Message Authentication Code

– Hash function with two input: the key and the
message

• y = h(x, k)

– Ease of computation

– Compression

– Key non-recovery
• From one or more message-MAC pairs it is unfeasible to get

the key

– Computation resistance
• Form one or more message-MAC pairs it is unfeasible to get

a new message-MAC pair

2018-19.1 Information and Network Security 20

Secret prefix method

• MACk(x) = hash(k|x)

• Insecure with iterated hash functions!

– x and M are known (M=h(k|x))

– Producing MAC on x|y is possible:

• M’ = f(M,y), where f is the compression function

2018-19.1 Information and Network Security 21

Secret suffix method

• MACk(x) = hash(x|k)

– May be insecure if collision is found

– If h(x)=h(x’) then MACk(x) = MACk(x’)

– Weakness

• MAC depends on the last chaining variable

HMAC

• Keyed-hash message authentication code

• Mihir Bellare, Ran Canetti, and Hugo
Krawczyk (1996)
– HMAC(h,k,m) = h((k opad) || h((k ipad) || m))

– ipad (inner)= 0x363636…36 (a whole block)

– opad (outer) = 0x5c5c5c…5c (a whole block)

• HMAC-SHA1
– 512 bit block size, 160 bit hash size

• HMAC-MD5
– 512 bit block size, 128 bit hash size

2018-19.1 Information and Network Security 22

2018-19.1 Information and Network Security 23

CBC-MAC

• Based on cipher block chaining
– Block cipher: DES

• Block size: 64 bit

– MAC key: DES key (56 bit)

– Padding and blocking

– Additional security: Use an other key and play 3DES

– The final output is the hash value (64 bit)

2018-19.1 Information and Network Security 24

CBC-MAC weakness

• Existential forgery of CBC-MAC
– x1 and MAC1 pair is known

– Request CBC-MAC for MAC1: MAC2=Ek(Ek(x1))

– MAC2 is a MAC for x1|000…0 as well !

– x1,MAC1 and x2,MAC2 are known one block
messages + hashes

– Request CBC-MAC for x1|z: MACz=Ek(Ek(x1)z)

– MACz is also MAC for x2|MAC1zMAC2

• Use fixed number of blocks

• MD-strengthening might help

Rainbow tables

• Inverse hash function is theoretically possible

with stored hash inputs and outputs

– Huge tables, not feasible

• Storing just some of these values, which are

the inputs and outputs of hash chains

– Ideally the chains are loop free and not merging

to each other

– TB large tables for given input sets, but now it is

already feasible!

2018-19.1 Information and Network Security 25

Rainbow table construction

• Reduction function: R

– Convert hash output into an possible input

– Multiple reduction functions in order to avoid

loops and merges: R1, R2, … Rk

2018-19.1 Information and Network Security 26

Rainbow tables

• Attacking with rainbow tables

• Example
– Find input for hash output re3xes

2018-19.1 Information and Network Security 27

1-2. Test with the end of the

chains (k tests)

3. Find a match in the table

4. Start the chain from the

table’s input word

5. Hash until a we found the

input

Defense against rainbow tables

• Make the input larger

– Slating

•saltedhash(password) = hash(password

|| salt)

• Makes the input larger

• Salt is not secret! But different for each hash

– Key stretching

• Use iterations to make the computation longer

• Reduces brute force rate and increase the time to

build a rainbow table

2018-19.1 Information and Network Security 28

2018-19.1 Information and Network Security 29

References

• Alfred J. Menezes, Paul C. van Oorschot

and Scott A. Vanstone, “Handbook of

Applied Cryptography”, CRC Press, ISBN:

0-8493-8523-7

– http://www.cacr.math.uwaterloo.ca/hac/

• Wikipedia - The free encyclopedia

– http://www.wikipedia.org/

