

Mobile self-organizing networks

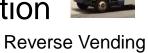
Dr. Vilmos Simon BME Dept. of Networked Systems and Services

Trends: Internet of Things

Smart Cities - M2M applications everywhere

Waste Management

Sports Medical Application


Air Conditions

Logistics


Smart Buildings Remote Monitoring Automatic Vehicle Location

Transportation

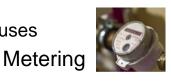
Medical

Ticketing **Smart City** Industrial **Environmental**

Irrigation

Public Transport

Smart Grid

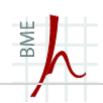

Retail

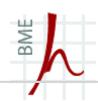
Living **Cool Chain Monitoring**

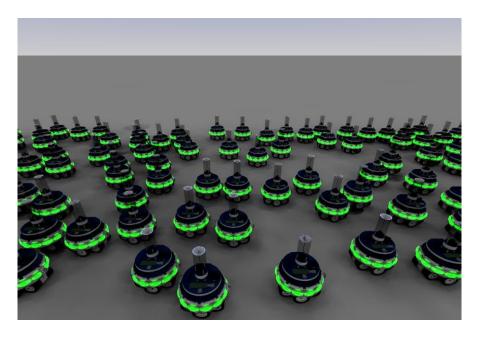
Energy Monitoring

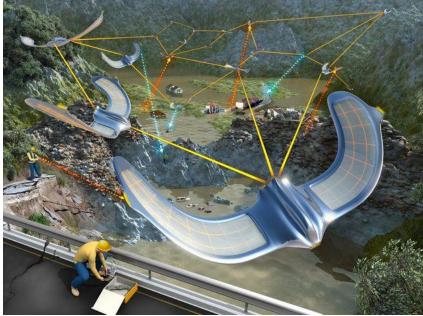
Vending Green Houses

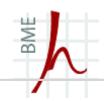
First Responders





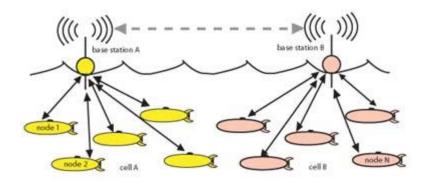

Trends: V2X communication

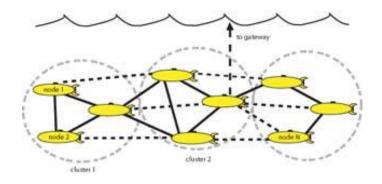


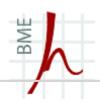


Trends: self-organized flocking

- Mobiles users moving in autonomous groups: flocks
 - UAVs, robots, cars
- Novel research: patrolling, autonomous task allocation

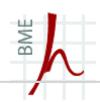



Network topologies

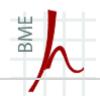

- Types of network topologies
 - Centralized
 - Decentralized (peer-to-peer)
 - Hybrid

Centralized

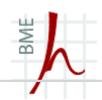
Decentralized


Centralized topology

- Communication from one node to another goes through a hub or base station (BS)
- Hub station controls nodes and monitors transmissions from each node
- Hub manages access by nodes to network's allocated bandwidth
- Configuration for cellular mobile and WLAN networks


Advantages of centralized topology

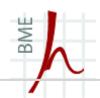
- Efficient use of transmit power
- Optimized placement of Hub/BS: minimizing obstruction
- Hub/BS: provides connection to backbone network
- Power control
 - a central point can determine required power for nodes to minimize interference and conserve battery


Disadvantages of centralized topology

- Single point of failure
- Can not deal with unpredictable propagation environments
- Cannot cover wide areas
 - where connections exceed range of single link
- Not suitable for self-organizing networks
- Requires significant infrastructure setup

Decentralized topologies

- Fully-connected network
 - All nodes can communicate directly
 - Requires nodes to be co-located
- Multi-hop network
 - If nodes can not directly reach the destination: intermediate nodes must relay messages to destination
 - Widely used in ad-hoc and mesh networks
 - Not possible to guarantee connectivity of all nodes


Fully-connected peer-to-peer network

Advantages

- No single point of failure
- No store-and-forward delay
- A node can be designated as a gateway to backbone network

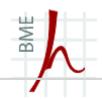
Disadvantages

- Performance degradation in large networks
- Near-far problem

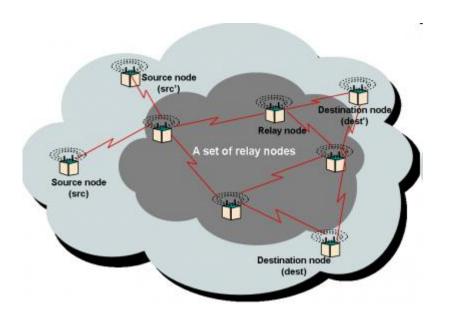
Multi-hop peer-to-peer

Advantages

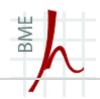
- Only solution if no infrastructure available
- Widely used in military applications
- Gaining popularity in other types of wireless networks
 - Ad hoc networks
 - Sensor networks


Disadvantages

- Multiple store-and-forwards
- Increase delay
 - for users separated by multiple hops
- No central timing or power control authority


Types of networks

- WiFi/ 802.11
 - Two modes
 - Centralized: wireless local area data network
 - Peer-to-peer: MAC/PHY for ad hoc networks
- Self-organized networks
 - Multi-hop peer-to-peer networks
 - Hybrid networks
 - Unicast, multicast and broadcast networks
- Wireless sensor networks


Self-organizing networks

- Dynamic topology
 - nodes enter and leave the network continuously
- No centralized control or fixed infrastructure
- Application areas:
 - Meetings
 - Emergency or disaster relief
 - Military communications
 - Wearable computers
 - Sensor networks

Self-organizing networks

- Limited communication range of the mobile nodes
 - Enables spatial reuse of limited bandwidth: increased network capacity
- Each mobil node is a
 - Packet source
 - Packet sink
 - Router
- Problem: how to determine where a destination node is located relative to a sending node

"Routing" in self-organizing networks

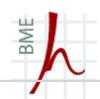
- Route-finding is a current area of much research
 - Want to determine an "optimal" way to find "optimal" routes
- Dynamic links
 - Broken links must be updated
 - New links must be formed
 - Based on this new information: routes must be modified
- Frequency of route changes a function of node mobility

Issues in self-organizing networks

- Routing performance
 - Routes change over time
 - due to node mobility
 - To avoid long delays when sending packets
 - But also to avoid lots of route maintenance overhead

MAC

- Broadcast communication channel
- Neighbor nodes change over time
- Sleep mode: to reduce energy drain
- No coordination/cooperation among nodes?

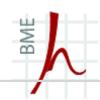


Issues in self-organizing networks

- Quality of service
 - Link variability
 - Collisions
 - Congestion
- Security
 - New vulnerabilities and complexities
 - Routing denial of service
 - Nodes may agree to route packets
 - Nodes may then fail to do so
 - Broken, malicious, selfish nodes
 - Key distribution and trust issues

MAC protocols

- No centralized control therefore:
 - Nodes independently determine access
 - Local nodes elected to control channel access
- Goals for MAC protocols
 - High channel efficiency
 - Low power
 - Scalable
 - Support for prioritization (QoS)
 - Distributed operation
 - Low control overhead



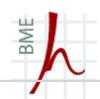
MAC: Channel separation

- Common channel vs. multiple channels
- Typical use of channel
 - Data transmission
 - RTS/CTS handshake
 - Carrier sensing
- Common: single channel for all packets
- Multiple: some packets (overhead) on one channel, while other packets (data) on others
 - allow more simultaneous users

Single channel

- Data and control messages on the same channel
- Collisions and contention
 - Handshake protocol
 - ACKs
 - Backoff protocol

Multiple channels


Typically, one channel for control, others for data

TDMA-based

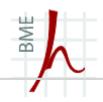
- Time slots + synchronization
- Best with real-time, periodic data

FDMA-based

Allows multiple nodes to transmit simultaneously

Multiple channels (cont.)

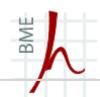
CDMA-based


Simultaneous transmissions via code separation

SDMA-based separation

Directional antennas to transmit in particular direction

Hybrid schemes

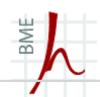

Combine channel separation methods

Topologies: Flat

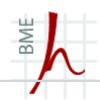
Flat

- Nodes make independent decisions to access the channel
 - Local coordination via handshaking, carrier sensing
- Single-hop: concerned only with immediate neighbors Scalability issues
- Multi-hop: some notion of nodes outside local neighborhood
 - Most use multiple channels

Topologies: Clustered


Clustered

- Elect local cluster head (CH) to perform control/management of network resources
- Reduces burden on nodes, increases burden on cluster head
 - Good for heterogeneous networks
 - Bluetooth: elect CH (Master) as node that initiated cluster (piconet)


Reducing energy consumption

- Radio operates in 3 modes: transmit, receive, standby
- Reduce transmit power
 - Use "just enough" to reach intended destination
- Place nodes in standby mode as much as possible
 - Nodes do not need to be on when not receiving data
 - Requires nodes to know when they must listen to the channel and when they can "sleep"
 - MAC protocols cannot use "promiscuous" mode to listen to other conversations
 - Node must know when other nodes have data to transmit to it

Reducing energy consumption (cont.)

- Collisions should be minimized
 - Retransmissions expend energy
 - Introduce delays (e.g. Random Assessment Delay)
 - Reduce number of ACKs required
 - Use contention for reservations and contention-free for data transmission
- Allocate contiguous slots for transmission/reception
 - Avoids power/time in switching from Tx to Rx
- Have node buffer packets and transmit all packets at once
 - Allows node to remain asleep for long time
 - Trade-off in delay to receive packets and buffer size

Reducing energy consumption (cont.)

- Make protocol decisions based on battery level
 - Choose cluster head to have plenty of energy
 - Give nodes with low energy priority in contention
- Reduce control overhead
 - Need control to avoid collisions, but reduce as much as possible