

Mobile self-organizing networks

Vilmos Simon BME Dept. of Networked Systems and Services

Global Fixed Telephone Lines vs. Mobile Subscriptions, 1994 - 2005

Source: http://mybroadband.co.za/news/wp-content/uploads/ 2012/12/Global-Fixed-Telephone-Lines-vs.-Mobile-Subscriptions-1994-2009.jpg

Source: https://jmerril.files.wordpress.com/2011/11/ screen-shot-2011-11-16-at-9-39-15-pm1.png

Smart Cities - M2M applications everywhere

Source: Eurotech -Smart City – Many Applications and Devices

Smart Buildings Remote Monitoring Logistics Automatic Vehicle Location Signage Waste Management Transportation Sports Medical Application **Air Conditions** Elderly Ticketing Retail Living Smart City Medical Industrial **Cool Chain Monitoring** Rail Value Transport Environmental **Energy Monitoring** Irrigation Vending Green Houses Public Transport Metering **First Responders** Smart Grid

Source: http://www.ict-citypulse.eu/page/sites/default/files/ traysequence-460_0.png

Trends: self-organized flocking

- Mobiles users moving in autonomous groups: flocks
 - UAVs, robots, cars
- Novel research: split and join actions

- Types of network topologies
 - Centralized
 - Decentralized (peer-to-peer)
 - Hybrid

- Communication from one node to another goes through a hub or base station (BS)
- Hub station controls nodes and monitors transmissions from each node
- Hub manages access by nodes to network's allocated bandwidth
- Configuration for cellular mobile and WLAN networks

- Efficient use of transmit power
- Optimized placement of Hub/BS: minimizing obstruction
- Hub/BS: provides connection to backbone network
- Power control
 - a central point can determine required power for nodes to minimize interference and conserve battery

- Single point of failure
- Can not deal with unpredictable propagation environments
- Cannot cover wide areas
 - where connections exceed range of single link
- Not suitable for self-organizing networks
- Requires significant infrastructure setup

- Fully-connected network
 - All nodes can communicate directly
 - Requires nodes to be co-located
- Multi-hop network
 - If nodes can not directly reach the destination: intermediate nodes must relay messages to destination
 - Widely used in ad-hoc and mesh networks
 - Not possible to guarantee connectivity of all nodes

- Advantages
 - No single point of failure
 - No store-and-forward delay
 - A node can be designated as a gateway to backbone network
- Disadvantages
 - Performance degradation in large networks
 - Near-far problem

- Advantages
 - Only solution if no infrastructure available
 - Widely used in military applications
 - Gaining popularity in other types of wireless networks
 - Ad hoc networks
 - Sensor networks
- Disadvantages
 - Multiple store-and-forwards
 - Increase delay
 - for users separated by multiple hops
 - No central timing or power control authority

- WiFi/ 802.11
 - Two modes
 - Centralized: wireless local area data network
 - Peer-to-peer: MAC/PHY for ad hoc networks
- Self-organized networks
 - Multi-hop peer-to-peer networks
 - Hybrid networks
 - Unicast, multicast and broadcast networks
- Wireless sensor networks

- Dynamic topology
 - nodes enter and leave the network continuously
- No centralized control or fixed infrastructure
- Application areas:
 - Meetings
 - Emergency or disaster relief
 - Military communications
 - Wearable computers
 - Sensor networks

- Limited communication range of the mobile nodes
 - Enables spatial reuse of limited bandwidth: increased network capacity
- Each mobil node is a
 - Packet source
 - Packet sink
 - Router
- Problem: how to determine where a destination node is located relative to a sending node

"Routing" in self-organizing networks

- Route-finding is a current area of much research
 - Want to determine an "optimal" way to find "optimal" routes
- Dynamic links
 - Broken links must be updated
 - New links must be formed
 - Based on this new information: routes must be modified
- Frequency of route changes a function of node mobility

- Routing performance
 - Routes change over time
 - due to node mobility
 - To avoid long delays when sending packets
 - But also to avoid lots of route maintenance overhead
- MAC
 - Broadcast communication channel
 - Neighbor nodes change over time
 - Sleep mode: to reduce energy drain
 - No coordination/cooperation among nodes?

- Quality of service
 - Link variability
 - Collisions
 - Congestion
- Security
 - New vulnerabilities and complexities
 - Routing denial of service
 - Nodes may agree to route packets
 - Nodes may then fail to do so
 - Broken, malicious, selfish nodes
 - Key distribution and trust issues

- No centralized control therefore:
 - Nodes independently determine access
 - Local nodes elected to control channel access
- Goals for MAC protocols
 - High channel efficiency
 - Low power
 - Scalable
 - Support for prioritization (QoS)
 - Distributed operation
 - Low control overhead

- Common channel vs. multiple channels
- Typical use of channel
 - Data transmission
 - RTS/CTS handshake
 - Carrier sensing
- **Common**: single channel for all packets
- Multiple: some packets (overhead) on one channel, while other packets (data) on others
 - allow more simultaneous users

- Data and control messages on the same channel
- Collisions and contention
 - Handshake protocol
 - ACKs
 - Backoff protocol

Typically, one channel for control, others for data

TDMA-based

- Time slots + synchronization
- Best with real-time, periodic data
- FDMA-based
 - Allows multiple nodes to transmit simultaneously

- CDMA-based
 - Simultaneous transmissions via code separation
- SDMA-based separation
 - Directional antennas to transmit in particular direction
- Hybrid schemes
 - Combine channel separation methods

- Flat
 - Nodes make independent decisions to access the channel
 - · Local coordination via handshaking, carrier sensing
 - Single-hop: concerned only with immediate neighbors
 Scalability issues
 - Multi-hop: some notion of nodes outside local neighborhood
 - Most use multiple channels

- Clustered
 - Elect local cluster head (CH) to perform control/management of network resources
 - Reduces burden on nodes, increases burden on cluster head
 - Good for heterogeneous networks
 - VBA: elect CH based on lowest IP address
 - WCA: elect CH based on weighting of distance to nbrs, battery power, mobility and connectivity; allows roaming between clusters
 - Jin, GPC: elect CH based on battery power
 - Bluetooth: elect CH (Master) as node that initiated cluster (piconet)

- Radio operates in 3 modes: transmit, receive, standby
- Reduce transmit power
 - Use "just enough" to reach intended destination
- Place nodes in standby mode as much as possible
 - Nodes do not need to be on when not receiving data
 - Requires nodes to know when they must listen to the channel and when they can "sleep"
 - MAC protocols cannot use "promiscuous" mode to listen to other conversations
 - Node must know when other nodes have data to transmit to it

Reducing energy consumption (cont.)

- Collisions should be minimized
 - Retransmissions expend energy
 - Introduce delays (e.g. Random Assessment Delay)
 - Reduce number of ACKs required
 - Use contention for reservations and contention-free for data transmission
- Allocate contiguous slots for transmission/reception
 - Avoids power/time in switching from Tx to Rx
- Have node buffer packets and transmit all packets at once
 - Allows node to remain asleep for long time
 - Trade-off in delay to receive packets and buffer size

Reducing energy consumption (cont.)

- Make protocol decisions based on battery level
 - Choose cluster head to have plenty of energy
 - Give nodes with low energy priority in contention
- Reduce control overhead
 - Need control to avoid collisions, but reduce as much as possible

Sender-initiated

- In most of the protocols
- Sender attempts to access channel when it has data

Receiver-initiated

- Receiver attempts to clear channel for transmissions
- Send request-to-transmit (RTR) to all neighbors or specific node
- Only efficient if large amount of traffic on network

Information dissemination in mobile self-organized networks

- Multihop broadcast algorithms
 - global (multihop) broadcast service for the dissemination of some control information
- The naive first implementation: flooding
 - every node repeats the message after it is first received
- The central problem of broadcast algorithms is to decide
 - when
 - who should retransmit messages
- Too many retransmissions
 - cause collisions
 - waste the network bandwidth
- Choosing the smallest forwarding set is not easy
 - a global view of the network is not available
 - local information gets obsolete very quickly if the velocity of the nodes is high

- Wireless sensor networks
 - Gathering measurements
 - Sending queries
- Robotic swarms
 - Keeping the swarm together
 - Distributing information
- Vehicular networks
 - Traffic info
 - Efficient route planning
 - Alerts

- The goal: disseminate a message to (almost) all nodes in the network minimizing resource usage.
- Blind flood
 - Broadcast storm
- Randomized
 - Gossiping
- Quasi local information
 - SBA, MMSBA, MIOBIO

Scalable Broadcast Algorithm (SBA)

- When a node receives a broadcasted packet from a node: excludes the neighbours of this node from the set of his own neighbours
- The resulting set is the set of the potentially interested nodes
- Random Assessment Delay (RAD) mechanism

(a) Neighbor node starts broadcasting (b) SBA updates the set of interested nodes

- Uses a simple 3-stage handshake to discover neighbors that are interested in one of the carried messages
- Reduce unnecessary load of neighbouring nodes ("spamming")
- Three different types of messages:
 - *ADV*: the list of messages that the sending node has *REQ*: by sending it the neighbor nodes indicate their interest in the advertised messages
 - *DATA*: the data message, which contains the requested information

- Plenty of multihop broadcast algorithms, working well in different environments
- The environment is changing so rapidly: there is no hope for choosing a theoretically optimal algorithm
- One solution: adaptive approach, the system "self-tunes" itself
- Our approach: a biologically inspired method, natural selection

- Main principle: to have many algorithm individuals that compete with each other in the system
- The individuals with the highest fitness will reproduce faster than the less fit ones
- Fitness estimation: direct feedback is not feasible
- Instead of trying to collect performance measurements at the sender
 - the sender attaches the code of the sender algorithm to every packet
 - delegates the decision to the receiver
 - Local fitness function at every node

- Every message carrying payload will also carry a genetic code of the sending algorithm
- The receiver knows which algorithms perform best: the highest number of useful messages
- When the algorithm individual dies at the receiver node: it will choose the best algorithm based on his local measurements
- Reduces overhead compared with a conventional statistics collecting scenario

- If using genetical programming, the basic elements of the algorithms can recombine: new algorithms are born
- The competing set is changing rapidly
- Self-organization without any control!

- Difference between useful and duplicated messages
 - Blue: without evolution
 - Red: with evolution

- Ratio of malware code to other 3 algorithms : 5, 30, 70%
- 70% case:

