Block ciphers

BMEVITMAV52
Information and Network Security feher.gabor@tmit.bme.hu

History of cryptography Modern cryptography

- Beginning with 1949
- Claude Shannon: Communication Theory of Secrecy Systems
- Solid theoretical basis for cryptography and for cryptanalysis
- No more alphabets, but 'bits' and 'bytes'
- 1975 DES - Data Encryption Standard
- 1976
- 1977 Diffie-Hellman key exchange RSA

Block ciphers

- Definition
- Function that transfers n-bit plaintext block to n-bit ciphertext block (n is the blocklength)
- The function is parameterized by a k-bit key
- One-to-one mapping (invertible)
- Symmetric key block ciphers
$-E(P, K)=C, D(C, K)=P$
- Asymmetric key block ciphers
$-\mathrm{E}\left(\mathrm{P}, \mathrm{K}_{1}\right)=\mathrm{C}, \mathrm{D}\left(\mathrm{C}, \mathrm{K}_{2}\right)=\mathrm{P}$

Well known symmetric block ciphers

- 1976: USA standard cipher: DES (Data Encryption Standard)
- 64 bit block length, 56 bit key length
- As of today it is insecure and slow
- 3DES: 3x DES cipher in a row
- $2 x$ not enough, 2 keys are already enough
- 64 bit block length, 112 bit key length
- Satisfactory security, but slow
- 2001. AES, the new cipher standard (Advanced Encryption Standard)
- 128 bit block length, 128-192-256 bit key length
- State of the art security and speed
- Other, less known ciphers
- IDEA, Twofish, Blowfish, RC5

Requirements to modern ciphers

- Avalanche effect
- Changing one bit in the input changes half of the output bits
- Completeness
- Each ciphertext bit is a complex function of all the bits in the plaintext
- Efficiency
- Using the same algorithm the plaintext and the ciphertext should be calculated fast

Product cipher

- Cloude Shannon (1949)
- "confusion and diffusion"
- Complex relationship between key and ciphertext
- Redundancy of plaintext is dissipated
- Idea:
- Build an encryption function from several simple functions (non satisfactory in alone)
- Simple operations: transposition, translation, linear transformation, substitutions...
- The result cipher should be more secure than the individual components

Feistel cipher

- Horst Feistel (IBM)
- Iterated product cipher
- t-bit long blocks: L_{0} and R_{0}
- After r round, makes ($\mathrm{R}_{\mathrm{r}}, \mathrm{L}_{\mathrm{r}}$) from ($\mathrm{L}_{0}, \mathrm{R}_{0}$)
- Round: $\mathrm{L}_{\mathrm{i}}=\mathrm{R}_{\mathrm{i}-1} ; \mathrm{R}_{\mathrm{i}}=\mathrm{L}_{\mathrm{i}-1} \otimes \mathrm{f}\left(\mathrm{R}_{\mathrm{i}}\right.$ ${ }_{1}, \mathrm{~K}_{\mathrm{i}}$)
- K_{i} is derived from the K key
- $\mathrm{R}_{\mathrm{i}}=\mathrm{R}_{\mathrm{i}-2} \otimes \mathrm{f}\left(\mathrm{R}_{\mathrm{i}-1}, \mathrm{~K}_{\mathrm{i}}\right)$
- Decryption goes the same way, but the keys are used in reverse order. f should not need to be invertible!
- Blocks (f)
- Permutation box (P box)
- Substitution box (S box)

Encryption:

Decryption:

Feistel Cipher

Data Encryption Standard (DES)

- History
- In 1970s there was a need for a standard cipher
- National Institute of Standards and Technology (NIST) issued a public request for standard cipher proposal
- In 1977 January, after long debates the standard was accepted: modified Lucifer (Feistel) cipher
- Feistel cipher
- 64 bit blocks
- 56 (64) bit key (with 8 bit parity) transformed into 16 different 48 bit subkeys
- 16 rounds, called stages
- $f\left(R_{i-1}, K_{i}\right)=P\left(S\left(E\left(R_{i-1}\right) \otimes K_{i}\right)\right)$
- P: Permutation (fixed), S: Substitution (non linar transformation), E: Expansion (fixed)
- Before the first round, initial permutation (IP). After the last run IP inverse (FP) is performed

DES rounds

- Feistel (F) function

DES properties

- Complementation property
- If $y=E_{K}(x)$ then $y^{*}=E_{K^{*}}\left(x^{*}\right)$
- Testing one key tells the result of the complement key as well
- Weak and semi-weak keys
- Palindrome subkeys: $\mathrm{K}_{1}=\mathrm{K}_{16}, \mathrm{~K}_{2}=\mathrm{K}_{15}, \ldots$
- Definition
- Weak key K: $\mathrm{E}_{\mathrm{K}}\left(\mathrm{E}_{\mathrm{K}}(\mathrm{x})\right)=\mathrm{x}$
- also means that $\left(E_{K}=D_{K}\right)$
- DES has 4 weak keys
- Semi-weak key pair: $\mathrm{K}_{1}, \mathrm{~K}_{2}$: $\mathrm{E}_{\mathrm{K} 1}\left(\mathrm{E}_{\mathrm{K} 2}(\mathrm{x})\right)=\mathrm{x}$
- also means that ($E_{\mathrm{K} 2}=\mathrm{D}_{\mathrm{K} 1}$)
- DES has 6 semi-weak key pairs

Brute force attack

- 56 bit security
- DES can be break using brute force approach (testing all the keys)
- 1997 DES Challenge: 96 days
- 1998 DES Challenge II-1: 41 days
- 1998 DES Challenge II-2: 56 hours (\$250.000 cost)
- 1999 DES Challenge III: 22 hours 15 minutes
- In 1970s software solutions need years to break it
- Today it is faster and we also have hardware implementations
- "Chinese lottery" theory
- 56 bit security is not sufficient today!
- Besides DES was too slow

IDEA

- IDEA - International Data Encryption Algorithm
- 64 bit blocks, 128 bit key
- Longer keys

Blowfish

- Blowfish - 1993 Bruce Schneier
- Fast, compact, simple, secure
- 64 bit blocks, 32-448 bit keys
- Feistel architecture (16 rounds)
- Large number of subkeys (better with infrequent key change) -> 4168 bytes

Make the key longer

- Make the key longer
- Using multiple encryptions with different keys
- Double encryption
- $C=E_{K 2}\left(E_{K 1}(P)\right)$
- $P=D_{K 1}\left(D_{K 2}(C)\right)$
- If block algorithm is not a group - $\mathrm{C}=\mathrm{E}_{\mathrm{K}_{2}}\left(\mathrm{E}_{\mathrm{K}_{1}}(\mathrm{P})\right)=$ $\mathrm{E}_{\mathrm{K}_{3}}(\mathrm{P})$ - then it would extend the keyspace. But later it turned out that using known plaintext attack (meet in the middle attack) it is only 2^{n+1} instead of $2^{2 n}$
- Meet in the middle: $\mathrm{E}_{\mathrm{K} 1}(\mathrm{P})$? $\mathrm{D}_{\mathrm{K} 2}(\mathrm{C})$

Meet in the Middle

- Meet in the middle attack
- Known plaintext and ciphertext
- Searching for the password
- Assuming 2 cipher blocks

Meet in the middle (cont.)

- Testing all the keys, storing the results
- Encryption: 2^{x} tests (x bit key length for the $1^{\text {st }}$ cipher)
- Decryption: 2^{y} tests (y bit key length for the $2^{\text {nd }}$ cipher)
- Testing and storing $2^{\mathrm{x}}+2^{\mathrm{y}}$ keys altogether
- Matching
- One of the encryption result using first key will match to the one of the decryption result using the second key
- $\mathrm{C}_{\mathrm{ka}}^{*}=\mathrm{P}_{\mathrm{kb}}^{*}$

This a, b is the key for the combined block encryption

- Complexity
- Instead of testing 2^{x+y} keys, we tested $2^{x}+2^{y}$ keys only. (+stored $2^{x}+2^{y}$ keys)
- 2DES: Instead of 2^{56+56} keys, it is just $2^{*} 2^{56}$ keys!

3DES

- Triple encryption - e.g. 3DES
- $\mathrm{C}=\mathrm{E}_{\mathrm{K} 1}\left(\mathrm{D}_{\mathrm{K} 2}\left(\mathrm{E}_{\mathrm{K}_{1}}(\mathrm{P})\right)\right)$
- $\mathrm{P}=\mathrm{D}_{\mathrm{K} 1}\left(\mathrm{E}_{\mathrm{K} 2}\left(\mathrm{D}_{\mathrm{K} 1}(\mathrm{C})\right)\right)$
- Doubles the key, but better then double encryption
- Triple encryption with independent keys
- $C=E_{K_{1}}\left(D_{K 2}\left(E_{K 3}(P)\right)\right)$
- $\mathrm{P}=\mathrm{D}_{\mathrm{K} 1}\left(\mathrm{E}_{\mathrm{K} 2}\left(\mathrm{D}_{\mathrm{K} 3}(\mathrm{C})\right)\right)$
- Due to the meet in the middle attack it is not $2^{3 n}$, but a true $2^{2 n}$ keyspace

3DES and Meet in the middle

- 3DES with 3 DES blocks
-2 groups: 1DES and 2DES -> 56 and 112 bit keys
- Meet in the middle attack:
- Instead of testing 2^{112+56} keys, it is just $2^{112}+2^{56}$ keys

- Effectively 3DES equals to a 112 bit key cipher

Need a new standard

- In 1997 NIST issued public request for a new cipher standard replacing 3DES
- DES was subject to brute force attack
- 3DES was too slow in software
- Requirements:
- 128 bit blocks
- 128, 192, 256 bit keys
- Speed is important
- Run on embedded systems (limited resources)
- Among 15 candidates Rijndael was selected and became standard in 2001

Substitution-permutation network

- Product cipher example
- Iterated block cipher
- Sequential repetition of a "round"
- Each round has its own subkey (part of the key)
- Invertible if the internal function in a round is a one-to-one mapping

AES - Advanced Encryption Standard

- Joan Daemen and Vincent Rijmen: Belgian inventors
- Substitution-permutation network
- Works on 4×4 byte arrays called states
- AddRoundKey - each byte of the state is combined with the round key; each round key is derived from the cipher key using a key schedule
- SubBytes - a non-linear substitution step where each byte is replaced with another according to a lookup table
- ShiftRows - a transposition step where each row of the state is shifted cyclically a certain number of steps
- MixColumns - a mixing operation which operates on the columns of the state, combining the four bytes in each column using a linear transformation
- AddRoundKey in the last round!
- It is also possible to transform stages into tables
- 16 table lookups and 1232 bit XOR operations, 4
- 128 bit keys: 10 rounds, 196 bit keys: 12 rounds and 256 bit keys: 14 rounds

AES stages

- Stages

Padding

- When the message is shorter than a block, padding should be used
- Also good for hide the length of a message
- Simple way:
- Add 0 bytes to the end. Works for C style strings, but not for binary data
- Original DES method
- One 1 bit followed by zeros. If message ends on a block border, then a whole padding block is added
- Last byte:
- The last byte shows the length of the padding, the others are zero
- Random padding
- The last byte shows the length of the padding, the others are random
- PKCS \#5 (Public Key Cryptography Standards - Password-based Encryption Standard)
- Padding with bytes showing the length of the padding

Block chaining

- Messages larger than a block should be encrypted block by block + block chaining - Modes of operation
- Modes of operation
- Electronic Code Book (ECB)
- Cipher-block Chaining (CBC)
- Cipher feedback (CFB)
- Output feedback (OFB)
- Counter (CTR)

ECB - Electronic Codebook

- Properties
- Same input - same output
- Blocks are independent
- Bit error affects the whole block, but no other blocks
- Attack: replacing blocks

Electronic Codebook (ECB) mode encryption

Electronic Codebook (ECB) mode decryption

Insecurity of ECB

- Not recommended!
- The output can be still recognized
- Repeating or replacing blocks

- Can be improved with random padding

CBC - Cipher-block Chaining

- Plaintext XORed with the previous ciphertext
- Needs an Initialization Vector (IV)
- IV should not be secret!
- Properties

Cipher Block Chaining (CBC) mode encryption

- Changing IV or key changes the output
- No replacing, repeating attack anymore
- Bit error affects the actual block + the next block
- Possible attack
- Change in the input changes all the output blocks

Error propagation in CBC

- Bit errors in the communication (e.g. wireless) or adversary's attack
- Bit error or bit insertion/removal

Modification attack or transmission error for CBC

Ciphertext stealing

- CBC mode, that does not require padding
- Encryption
- Fill the last block with 0 bytes
- Encryption using CBC
- Swap the last 2 ciphertext blocks
- Truncate the length of the last ciphertext
- Decryption
- If ciphertext is shorter than a block, then use the last bits of the last decrypted plaintext
- Swap the last 2 ciphertext block
- Truncate the length of the plaintext

CFB - Cipher Feedback

- Generates a keystream no padding
- Properties
- Like CBC, but
- 2 corrupted blocks
- No decryption used!
- Not suitable for asymmetric ciphers
- CFB-r

Cipher Feedback (CFB) mode encryption

Cipher Feedback (CFB) mode decryption

- Works on less bits than a whole block

OFB - Output Feedback

- Properties
- Similar to CFB, but
- Keystream is independent of the plaintext
- Bit error affects only one bit in the output
- OFB-r
- Key and IV pair should not be reused

CTR - Counter

- Uses a counter, no feedback
- Random access
- Nonce and key pair should not be reused!

- Problems with the same key
- P1 XOR K1 = C1
- P2 XOR K1 = C2
- (P1 XOR K1) XOR (P2 XOR
K1) = C1 XOR C2
- P1 XOR P2 = 1 XOR C2
- (P1 XOR K1) XOR (P2 XOR
K1) = C1 XOR C2
- P1 XOR P2 = 1 XOR C2
- (P1 XOR K1) XOR (P2 XOR
K1) = C1 XOR C2
- P1 XOR P2 = C1 XOR C2

Counter (CTR) mode decryption

No key here!

Authentication

- ECB, CBC, CFB and OFB make encryption, but no authentication
- Authentication + encryption
- Authenticated-encryption with associated-data (AEAD)
- Two-pass solutions
- EAX mode
- CCM - Counter with CBC-MAC
- One-pass solutions
- OCB - Offset Codebook Mode

References

- Alfred J. Menezes, Paul C. van Oorschot and Scott A. Vanstone, "Handbook of Applied Cryptography", CRC Press, ISBN: 0-8493-8523-7
- http://www.cacr.math.uwaterloo.ca/hac/
- Wikipedia - The free encyclopedia
- http://www.wikipedia.org/
- AES animation
- http://www.cs.bc.edu/~straubin/cs38105/blockciphers/rijndael_ingles2004.swf

