Block ciphers

BMEVITMAV52 Information and Network Security feher.gabor@tmit.bme.hu

History of cryptography Modern cryptography

- Beginning with 1949
 - Claude Shannon: Communication Theory of Secrecy Systems
 - Solid theoretical basis for cryptography and for cryptanalysis

- No more alphabets, but 'bits' and 'bytes'
- 1975 DES Data Encryption Standard
- 1976 Diffie-Hellman key exchange
- 1977 RSA

Block ciphers

- Definition
 - Function that transfers n-bit plaintext block to n-bit ciphertext block (n is the blocklength)
 - The function is parameterized by a k-bit key
 - One-to-one mapping (invertible)
- Symmetric key block ciphers
 E(P,K)=C, D(C,K)=P
- Asymmetric key block ciphers
 E(P,K₁)=C, D(C,K₂)=P

Well known symmetric block ciphers

- 1976: USA standard cipher: DES (Data Encryption Standard)
 - 64 bit block length, 56 bit key length
 - As of today it is insecure and slow
- 3DES: 3x DES cipher in a row
 - 2x not enough, 2 keys are already enough
 - 64 bit block length, 112 bit key length
 - Satisfactory security, but slow
- 2001: AES, the new cipher standard (Advanced Encryption Standard)
 - 128 bit block length, 128-192-256 bit key length
 - State of the art security and speed
- Other, less known ciphers
 - IDÉA, Twofish, Blowfish, RC5

Requirements to modern ciphers

- Avalanche effect
 - Changing one bit in the input changes half of the output bits
- Completeness
 - Each ciphertext bit is a complex function of all the bits in the plaintext
- Efficiency
 - Using the same algorithm the plaintext and the ciphertext should be calculated fast

Product cipher

- Cloude Shannon (1949)
 - "confusion and diffusion"
 - Complex relationship between key and ciphertext
 - Redundancy of plaintext is dissipated
- Idea:
 - Build an encryption function from several simple functions (non satisfactory in alone)
 - Simple operations: transposition, translation, linear transformation, substitutions...
 - The result cipher should be more secure than the individual components

Feistel cipher

- Horst Feistel (IBM)
- Iterated product cipher
 - t-bit long blocks: L_0 and R_0
 - After r round, makes (R_r,L_r) from (L₀,R₀)
 - Round: $L_i = R_{i-1}$; $R_i = L_{i-1} \otimes f(R_{i-1}, K_i)$
 - K_i is derived from the K key
 - $R_i = R_{i-2} \otimes f(R_{i-1}, K_i)$
 - Decryption goes the same way, but the keys are used in reverse order. f should not need to be invertible!
- Blocks (f)
 - Permutation box (P box)
 - Substitution box (S box)

Data Encryption Standard (DES)

- History
 - In 1970s there was a need for a standard cipher
 - National Institute of Standards and Technology (NIST) issued a public request for standard cipher proposal
 - In 1977 January, after long debates the standard was accepted: modified Lucifer (Feistel) cipher
- Feistel cipher
 - 64 bit blocks
 - 56 (64) bit key (with 8 bit parity) transformed into 16 different 48 bit subkeys
 - 16 rounds, called stages
 - $f(\mathsf{R}_{i-1},\mathsf{K}_i) = \mathsf{P}(\mathsf{S}(\mathsf{E}(\mathsf{R}_{i-1})\otimes\mathsf{K}_i))$
 - P: Permutation (fixed), S: Substitution (non linar transformation), E: Expansion (fixed)
 - Before the first round, initial permutation (IP). After the last run IP inverse (FP) is performed

DES rounds

 Feistel (F) function

Information and Network Security

DES properties

- Complementation property`
 - If $y = E_{K}(x)$ then $y^* = E_{K^*}(x^*)$
 - Testing one key tells the result of the complement key as well
- Weak and semi-weak keys
 - Palindrome subkeys: $K_1 = K_{16}, K_2 = K_{15}, \dots$
 - Definition
 - Weak key K: E_K(E_K(x)) = x
 - also means that $(E_K = D_K)$
 - DES has 4 weak keys
 - Semi-weak key pair: K_1, K_2 : $E_{K1}(E_{K2}(x)) = x$
 - also means that $(E_{K2} = D_{K1})$
 - DES has 6 semi-weak key pairs

Brute force attack

- 56 bit security
 - DES can be break using brute force approach (testing all the keys)
 - 1997 DES Challenge: 96 days
 - 1998 DES Challenge II-1: 41 days
 - 1998 DES Challenge II-2: 56 hours (\$250.000 cost)
 - 1999 DES Challenge III: 22 hours 15 minutes
 - In 1970s software solutions need years to break it
 - Today it is faster and we also have hardware implementations
 - "Chinese lottery" theory
- 56 bit security is not sufficient today!
- Besides DES was too slow

IDEA

- IDEA International Data Encryption
 Algorithm
 - 64 bit blocks, 128 bit key
- Longer keys

Blowfish

- Blowfish 1993 Bruce Schneier
 - Fast, compact, simple, secure
 - 64 bit blocks, 32-448 bit keys
- Feistel architecture (16 rounds)
- Large number of subkeys (better with infrequent key change) -> 4168 bytes

Make the key longer

• Make the key longer

- Using multiple encryptions with different keys

- Double encryption
 - $C = E_{K2}(E_{K1}(P))$
 - $P = D_{K1}(D_{K2}(C))$
 - If block algorithm is not a group $C = E_{K2}(E_{K1}(P)) = E_{K3}(P)$ then it would extend the keyspace. But later it turned out that using known plaintext attack (meet in the middle attack) it is only 2ⁿ⁺¹ instead of 2²ⁿ
 - Meet in the middle: $E_{K1}(P)$? $D_{K2}(C)$

Meet in the Middle

- Meet in the middle attack
 - Known plaintext and ciphertext
 - Searching for the password
 - Assuming 2 cipher blocks

Known

plaintext

Known

ciphertext

Meet in the middle (cont.)

- Testing all the keys, storing the results
 - Encryption: 2^x tests (x bit key length for the 1st cipher)
 - Decryption: 2^y tests (y bit key length for the 2nd cipher)
 - Testing and storing $2^x + 2^y$ keys altogether
- Matching
 - One of the encryption result using first key will match to the one of the decryption result using the second key
 - $C_{ka}^* = P_{kb}^*$

This a,b is the key for the combined block encryption

- Complexity
 - Instead of testing 2^{x+y} keys, we tested 2^x + 2^y keys only. (+stored 2^x + 2^y keys)
 - 2DES: Instead of 2^{56+56} keys, it is just $2^{*}2^{56}$ keys!

3DES

- Triple encryption e.g. 3DES
 - $C = E_{K1}(D_{K2}(E_{K1}(P)))$
 - $P = D_{K1}(E_{K2}(D_{K1}(C)))$
 - Doubles the key, but better then double encryption
- Triple encryption with independent keys
 - $C = E_{K1}(D_{K2}(E_{K3}(P)))$
 - $P = D_{K1}(E_{K2}(D_{K3}(C)))$
 - Due to the meet in the middle attack it is not 2³ⁿ, but a true 2²ⁿ keyspace

3DES and Meet in the middle

- 3DES with 3 DES blocks
 - 2 groups: 1DES and 2DES -> 56 and 112 bit keys
 - Meet in the middle attack:
 - Instead of testing 2¹¹²⁺⁵⁶ keys, it is just 2¹¹²+2⁵⁶ keys

- Effectively 3DES equals to a 112 bit key cipher

Need a new standard

- In 1997 NIST issued public request for a new cipher standard replacing 3DES
 - DES was subject to brute force attack
 - 3DES was too slow in software
 - Requirements:
 - 128 bit blocks
 - 128, 192, 256 bit keys
 - Speed is important
 - Run on embedded systems (limited resources)
- Among 15 candidates Rijndael was selected and became standard in 2001

Substitution-permutation network

- Product cipher example
- Iterated block cipher
 - Sequential repetition of a "round"
 - Each round has its own subkey (part of the key)
 - Invertible if the internal function in a round is a one-to-one mapping

AES – Advanced Encryption Standard

- Joan Daemen and Vincent Rijmen: Belgian inventors
- Substitution-permutation network
- Works on 4x4 byte arrays called states
 - AddRoundKey each byte of the state is combined with the round key; each round key is derived from the cipher key using a key schedule
 - SubBytes a non-linear substitution step where each byte is replaced with another according to a lookup table
 - ShiftRows a transposition step where each row of the state is shifted cyclically a certain number of steps
 - MixColumns a mixing operation which operates on the columns of the state, combining the four bytes in each column using a linear transformation
 - AddRoundKey in the last round!
- It is also possible to transform stages into tables
 - 16 table lookups and 12 32 bit XOR operations, 4
- 128 bit keys: 10 rounds, 196 bit keys: 12 rounds and 256 bit keys: 14 rounds

AES stages

Stages

Information and Network Security

Padding

- When the message is shorter than a block, padding should be used
 - Also good for hide the length of a message
- Simple way:
 - Add 0 bytes to the end. Works for C style strings, but not for binary data
- Original DES method
 - One 1 bit followed by zeros. If message ends on a block border, then a whole padding block is added
- Last byte:
 - The last byte shows the length of the padding, the others are zero
- Random padding
 - The last byte shows the length of the padding, the others are random
- PKCS #5 (Public Key Cryptography Standards Password-based Encryption Standard)
 - Padding with bytes showing the length of the padding

Block chaining

- Messages larger than a block should be encrypted block by block + block chaining – Modes of operation
- Modes of operation
 - Electronic Code Book (ECB)
 - Cipher-block Chaining (CBC)
 - Cipher feedback (CFB)
 - Output feedback (OFB)
 - Counter (CTR)

ECB – Electronic Codebook

- Properties
 - Same input same output
 - Blocks are independent
 - Bit error affects the whole block, but no other blocks
 - Attack: replacing blocks

Electronic Codebook (ECB) mode encryption

Electronic Codebook (ECB) mode decryption

Insecurity of ECB

- Not recommended!
 - The output can be still recognized
 - Repeating or replacing blocks

 Can be improved with random padding

CBC – Cipher-block Chaining

- Plaintext XORed with the previous ciphertext
 - Needs an Initialization Vector (IV)
 - IV should not be secret!
- Properties
 - Changing IV or key changes the output
 - No replacing, repeating attack anymore
 - Bit error affects the actual block + the next block
 - Possible attack
 - Change in the input changes all the output blocks

Cipher Block Chaining (CBC) mode encryption

Cipher Block Chaining (CBC) mode decryption

Error propagation in CBC

- Bit errors in the communication (e.g. wireless) or adversary's attack
- Bit error or bit insertion/removal

Modification attack or transmission error for CBC

Ciphertext stealing

- CBC mode, that does not require padding
 - Encryption
 - Fill the last block with 0 bytes
 - Encryption using CBC
 - Swap the last 2 ciphertext blocks
 - Truncate the length of the last ciphertext
 - Decryption
 - If ciphertext is shorter than a block, then use the last bits of the last decrypted plaintext
 - Swap the last 2 ciphertext block
 - Truncate the length of the plaintext

CFB – Cipher Feedback

- Generates a keystream no padding
- Properties
 - Like CBC, but
 - 2 corrupted blocks
 - No decryption used!
 - Not suitable for asymmetric ciphers
 - CFB-r
 - Works on less bits than a whole block

Cipher Feedback (CFB) mode encryption

Cipher Feedback (CFB) mode decryption

OFB – Output Feedback

- Properties
 - Similar to CFB, but
 - Keystream is independent of the plaintext
 - Bit error affects only one bit in the output
 - OFB-r
 - Key and IV pair should not be reused

Output Feedback (OFB) mode encryption

Output Feedback (OFB) mode decryption

CTR - Counter

- Uses a counter, no feedback
- Random access
- Nonce and key pair should not be reused!
- Problems with the same key
 - P1 XOR K1 = C1
 - P2 XOR K1 = C2
 - (P1 XOR K1) XOR (P2 XOR
 K1) = C1 XOR C2
 - P1 XOR P2 = C1 XOR C2

No key here!

Counter (CTR) mode encryption

Counter (CTR) mode decryption

K1 XOR K1 = 0 !

2018-19.1

Authentication

- ECB, CBC, CFB and OFB make encryption, but no authentication
- Authentication + encryption
 - Authenticated-encryption with associated-data (AEAD)
 - Two-pass solutions
 - EAX mode
 - CCM Counter with CBC-MAC
 - One-pass solutions
 - OCB Offset Codebook Mode

References

- Alfred J. Menezes, Paul C. van Oorschot and Scott A. Vanstone, "Handbook of Applied Cryptography", CRC Press, ISBN: 0-8493-8523-7
 - http://www.cacr.math.uwaterloo.ca/hac/
- Wikipedia The free encyclopedia – http://www.wikipedia.org/
- AES animation
 - http://www.cs.bc.edu/~straubin/cs381 05/blockciphers/rijndael_ingles2004.swf