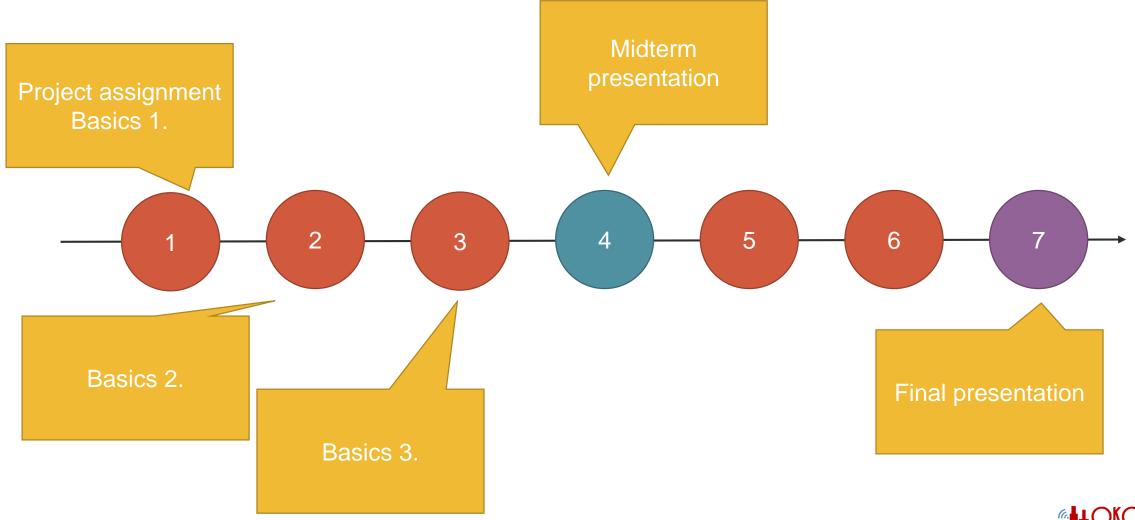


Exercises

VITMMA09 – Smart City, MSc specialization

Bemutatkozás

- Fehér Gábor, TMIT
 - IE.325, IE.326b
 - feher@tmit.bme.hu



Smart City - Sensor Networks and Applications - Exercises

- Goals
 - Practice what you have learnt on the lectures. Hands on experience
 - Get to know a real sensor network
 - Plan, implement, test
 - Could be useful in real life as well
- Methodology
 - Project work, work in small groups (3/4 students)
 - Realize the project during the semester, present in the class
 - Project assignment (now!)
 - Midterm and final presentation
 - Workshop like exercises
- Exercise schedule
 - Monday on all even weeks
 - Required to show up at least 70% of the exercises (we have a catalog)

Project assignment, presentation

Project work and presentations

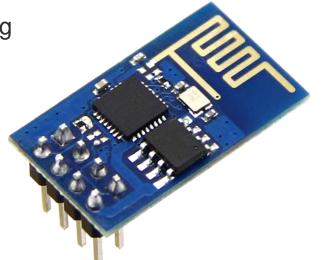
- Smart City laboratory, IE.326b
 - "Working zone" for work and presentations
 - Could be built up at home as well
- Consultations
 - Should be arranged in email
 - Forum for the students?
- Tutorials on the Internet as well.

- Presentations
 - Midterm presentation
 - Idea, plan should be ready
 - All modules are available
 - Presentation with a video
 - "Trailer for the application"
 - 5 minutes discussions
 - Final presentation
 - Presentation with a video
 - More like a marketing movie
 - Presented on YouTube
 - 5 minutes discussions
 - Voting

Project environment

- Same sensor and communication for all projects
 - Make connections between the projects, help each other
- HW/SW elements provided by the department
 - Mote
 - Microcontroller + communication
 - Sensor/Actuator
 - Gateway
 - Connection to the Internet
 - Application
 - Backend (Server side / cloud)
 - Frontend (web / app)

You will get the thing on the second exercise

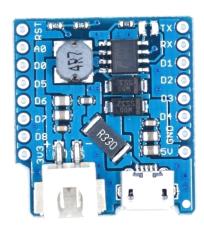

HW/SW components 1.

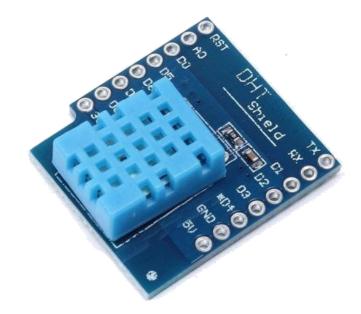
- Wemos D1 mini
 - ESP8266 based WiFi
 - 32 bit architecture
 - Tensilica L106
 - 80 (160) MHZ CPU
 - 4MB FLASH
 - ~ 36 KB RAM

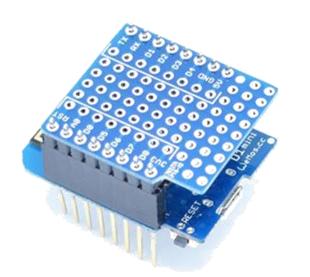
- WiFi communications
 - WiFi 802.11 b/g/n
 - STA/AP/STA+AP
 - WEP/WPA/WPA2
 - TCP/IP stack

Serial communication and programming

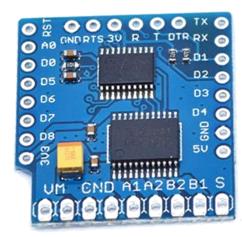
CH340G USB to UART

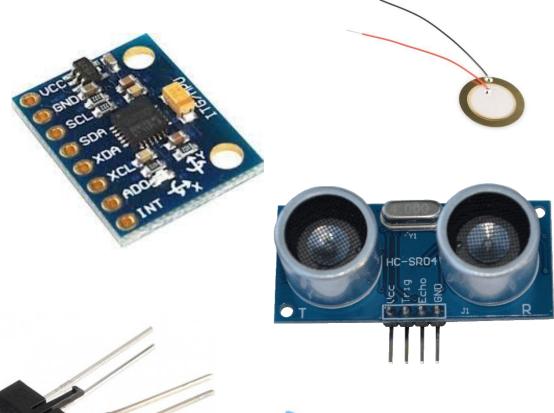


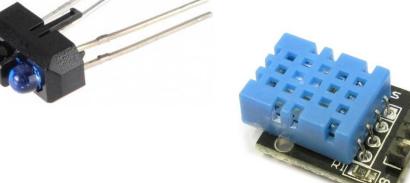




HW/SW components 2.


- Wemos D1 mini shields
 - Relay Shiled
 - Proto Board
 - Motor Shield
 - Battery Shield
 - Digital Temperature Humidity




HW/SW components 3.

- Sensors and actuators
 - Fitting with breadboard or probe panel
 - Analog/SPI/I2C connection
 - Drivers are available on the internet

- Accelerometer
- Gyroscope
- Compass
- Barometer
- Photoresistor
- Microphone
- Temperature
- Humidity
- Distance
- Proximity
- Piezo

- Moror
- LED
- RGB LED
- Buzzer
- Heater

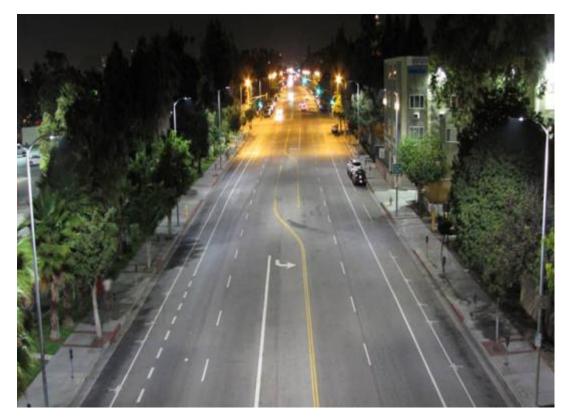
HW/SW components 4.

- Wemos D1 mini
 - LUA scripts
 - Micropython
 - C or C++
- Application side
 - Android apps
 - Cloud backend
 - Web frontend

For advanced students

- Arduino (ATMEGA328p alapú MCU)
- STM32 based microcontrollers
- Raspberry Pi 1-2-3
 - Ethernet (WiFi) connection
- nRF24L01+ radio

Cameras and computer vision


- Support, help width
 - PCB design, manufacture
 - 3D printing
 - Assembly

Projects

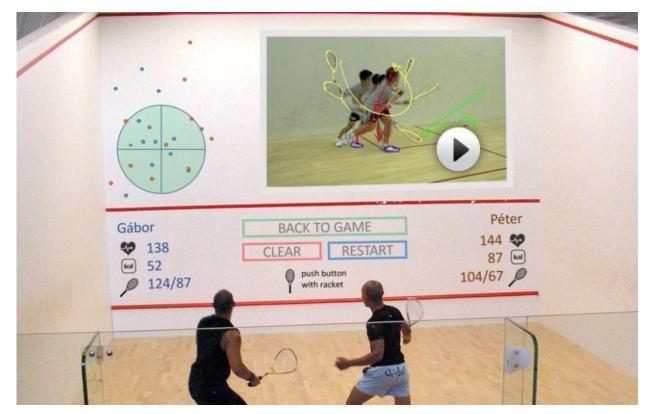
Project A. – Smart City lights

- Smart lighting
 - Switching/dimming the lamps based on local measurements
 - Control lamps based on events
 - Passing people
 - Passing vehicles
 - According to needs

Project B. – Smart City parking

- Smart parking
 - Recognizing parking cars
 - Display free spaces, analytics
 - Navigation to empty sports
 - close areas

Projekt C. – Smart City playground


- Smart playground
 - Interaction with children
 - Analytics (usage, popularity)
 - Monitoring, repairs
 - Safety

Project D. – Smart City sport

- Smart sport
 - Support public sport and racing
 - Sport analytics
 - Performance
 - Race, tactics
 - Incentives
 - Social sharing

Project E. – Smart City traffic


- Smart traffic control
 - Measure vehicles passing by
 - Control traffic lights
 - Analytics
 - Traffic jams
 - Pollution

Project F. – Smart City utilities

- Smartmetering
 - Measuring consumption
 - Electricity
 - Water
 - Gas
 - Analytics
 - Incentives, social approach, gamification

Project G. – Smart City flora

- Smart parks
 - Control watering or shading
 - Analytics
 - Weather
 - Events (blooming)
 - Visitors

Project H. – Smart environment

- Smart environment measurements
 - Weather
 - Air Pollution
 - Noise, light pollution
 - Analytics
 - Combine multiple stations

Project I. – Smart City home

- Smart vacuum cleaners
 - Sensors
 - Movement
 - Proximity, distance
 - Control over the internet

Project X – Smart idea

Your OWN idea!

Connections

- Connections between projects are encouraged!
 - Knowledge sharing on same/similar HW/SW components
 - Connection between topics
 - E.g.:
 - Lighting + traffic
 - Playground + park watering
 - Parks + environment

