Vizuális helymeghatározás A vizuális helymeghatározás alapjai

Lukovszki Csaba¹

¹Budapesti Műszaki és Gazdaságtudományi Egyetem Távközlési és Médiainformatikai Tanszék

2015

(日) (同) (三) (三)

2015

1 / 47

Lukovszki Csaba (BME TMIT) Navigációs szolgáltatások és alkalmazások

Áttekintés

- Bevezető
 - Feladat megfogalmazása
 - Kapcsolódó tématerületek
 - A képi helymeghatározás modelljei
 - Funkcionális elemek
- Képek feldolgozása
 - Jellemző felismerés
 - Jellemző leírás
 - Jellemző párosítás
 - Jellemző követés
- A projektív geometria alapjai
 - Projekció
 - Lyukkamera vetítési modellje

・ 同 ト ・ ヨ ト ・ ヨ ト

A feladat megfogalmazása

- Az alapvető feladat
 - Az abszolút, vagy relatív hely, valamint
 - Orientáció meghatározása
- Látott képi elemek alapján
 - Képi elemek felismerése
 - Leképzés modellezése
 - A modell alapján a hely és orientáció meghatározása

(D) (A P) (B) (B)

Bevezetés

Szabadsági fok

DoF (Degree of Freedom)

- Tetszőleges mozgás, 6 DoF
 - 3 transzlációs
 - 3 rotációs (Roll, Pitch, Yaw)
- Korlátozott mozgás

Lukovszki Csaba (BME TMIT) Navigációs szolgáltatások és alkalmazások

< A

Bevezetés

Funkcionális elemek áttekintése

- Jellemző felismerés (Feature Detection)
- Jellemző kinyerés, leírás (Feature Extraction, Description)
- Jellemző párosítás, követés (Feature Matching, Tracking)
- Hely, helyzet meghatározás (Pose Estimation)
 - A meghatározás során használhatja a térkép adatbázist
- Térépítés (Map Building, Feature Registration)
 - Eredménye a térkép folyamatos fejlesztése
- Hurok keresés (Loop Closing)
- Optimalizáció (Optimization)

イロト イポト イヨト イヨト

Kapcsolódó tématerületek

- SfM (Structure from Motion): adott képhalmaz alapján három dimenziós modell készítése egy tárgyról, helyszínről. Főbb szempontok:
 - 3D struktúra előállítása
 - A modell lehet:
 - Ponthalmaz
 - Fundamentális és esszenciális mátrixok alapján
 - Globálisan, vagy lépésenként
 - Bundle adjustment
 - Eredménye a térbeli pontok, valamint a nézőponok helyei és orientációi
 - Poligonhálók, magasabb szintű felületek
- Megvalósítások
 - Visual SFM
 - Insight3d
 - Bundler
 - Theia
 - Þ ...

Lukovszki Csaba (BME TMIT)

Navigációs szolgáltatások és alkalmazások

2015 6 / 47

イロト 不得下 イヨト イヨト 二日

Kapcsolódó tématerületek

SLAM

- SLAM (Simultaneous Localization and Mapping): időben sorrendben érkező képek segítségével a kamera helyének meghatározása, valamint a környezet feltérképezése.
 - Főbb szempontok:
 - Globálisan konzisztens térkép előállítása
 - Hurkok detektálása
- Változatai
 - PTAM (Parallel Tracking and Mapping): a feladatok párhuzamosítása, jellemzően a relatív mozgás meghatározás és a térépítés különválasztásával.
 - DTAM (Dense Tracking and Mapping): térépítés és relatív mozgás meghatározás sűrű pontok hálójából.
- Megvalósításai
 - EKF SLAM
 - Monocular SLAM (MonoSLAM)
 - FastSLAM
 - ► ...

Lukovszki Csaba (BME TMIT)

Navigációs szolgáltatások és alkalmazások

2015 7 / 47

Kapcsolódó tématerületek vo

- Visual Odometry: a kamera pontos elmozdulásának meghatározása
- Odometria: legkorábbi felhasználási területük a marsjárók mozgásának pontos becslése Főbb szempontok:
 - Nagyon pontos elmozdulás
 - Valósidejűség
- Megvalósításai
 - MSCKF (Multi State Constrained Kalman Filter)
 - SWF (Sliding Window Filter)

イロト イポト イヨト イヨト

Bevezetés

A képi helymeghatározás modelljei Modell

Lukovszki Csaba (BME TMIT) Navigációs szolgáltatások és alkalmazások

▶ ≣ ৩৭৫ 2015 9/47

Bevezetés

Modell

A kamera

- C_k: A kamera pozíciója és orientációja a k-dik helyen
- ► T_{k,l}: A k és l pozíciók közötti transzformáció (amennyiben l = k − 1 a képek egymást követik időben)

$$\mathbf{C}_n = \mathbf{C}_0 \prod_{i=1}^n \mathbf{T}_i$$

A tér pontjaira

- X_j: a tér egy 3D pontjának koordinátái
- x_j: a tér 3D pontjának leképzése a 2D képsíkra

Lukovszki Csaba (BME TMIT) Navigációs szolgáltatások és alkalmazások

2015 10 / 47

A képi helymeghatározás modelljei 2D-2D

Különböző nézőpontokból készített képek ($x_{k,j}$) alapján kell megbecsüljük a kamerák közötti transzformációt ($T_{k,l}$ -t)

- Fundamentális, vagy esszenciális mátrixok becslése alapján
- Folyamata
 - Kép kinyerése (I_j)
 - ► Jellemzők kinyerése és párosítása $(\mathbf{x}_{k,j} \leftrightarrow \mathbf{x}_{l,j})$
 - Esszenciális, vagy fundamentális mátrix számítása
 - Elforgatás (**R**_{k,l}), valamint a transzláció (**t**_{k,l}) meghatározása, majd ezekből **T**_{k,l}.
- Probléma
 - A skála meghatározása

◆ロト ◆帰 ▶ ◆臣 ▶ ◆臣 ▶ ○臣 ○ のへの

Bevezetés

A képi helymeghatározás modelljei ^{3D-3D}

Minden egyes nézőpontban rendelkezésünkre áll a kép jellemző pontjainak 3D koordinátái $(\mathbf{X}_{k,j})$, a kamerák közötti transzformáció $(\mathbf{T}_{k,l})$ meghatározása ezek alapján történik.

- A mélység meghatározásának lehetőségei
 - Sztereó kamera segítségével
 - Mélységérzékelővel
 - Mono kamera segítségével (ez csak elméleti)
- A transzformáció meghatározása

$$\mathbf{T}_k = arg\min_{\mathbf{T}_k} \sum_j ||\mathbf{X}_{k,j} - \mathbf{X}_{l,j}||$$

Lukovszki Csaba (BME TMIT) Navigációs szolgáltatások és alkalmazások

イロト 不得下 イヨト イヨト 二日

A képi helymeghatározás modelljei ^{3D-2D}

Az elmozdulás meghatározása a képi 2D jellemzők $(\mathbf{x}_{k,j})$, valamint a rendelkezésre álló 3D jellemző pontok (\mathbf{X}) alapján történik.

- A transzformáció meghatározása
 - Az $(\mathbf{x}_{k,j} \leftrightarrow \mathbf{X}_{l,j})$ párok megkeresése
 - ► A 3D jellemzők visszavetítése \mathbf{T}_k transzformáció alapján ($\mathbf{x}_{l,j} \leftarrow \mathbf{X}_{l,j}$)

$$\mathbf{T}_k = arg\min_{\mathbf{T}_k} \sum_j ||\mathbf{x}_{k,j} - \mathbf{x}_{l,j}||^2$$

Lukovszki Csaba (BME TMIT) Navigációs szolgáltatások és alkalmazások

ヘロト 不得 とうき とうとう ほう

Az egyes képek azonosítása helyhez rendelhető információi alapján. A képek feldolgozásának célja többféle lehet:

- A kép azonosítása
- A képen szereplő területek, objektumok azonosítása
- Képek, vagy képeken szereplő területek, illetve objektumok összehasonlítása
- A képeket a jellemzőik alapján vizsgáljuk:
 - Globális jellemzők
 - Világosság
 - Elmosódottság
 - Színesség, …
 - Lokális jellemzők
 - Sarok (Corner)
 - Folt (Blob)
 - Él (Edge), ...

Lukovszki Csaba (BME TMIT)

Navigációs szolgáltatások és alkalmazások

2015 14 / 47

- 4 得 と 4 き と 4 き と

Jellemzők detektálása Feature Detection

A jellemzők detektálása során a (lokális) jellemzőket derítjük fel, majd azon jellemzők helyét határozzuk meg. Jellemzők detektorok:

- Sarkok detektor (Corner detector)
- Folt detektor (Blob detector)
- Él detektor (Edge detector)

(D) (A P) (B) (B)

Harris detektor

A legrégebbi jellemző detektor.

Az elv a kép autokorrelációján alapul (w(x, y) Gauss súlyfüggvény):

$$E_{AC}(\Delta u) = \sum_{i} w(x_i) [I_0(x_i + \Delta u) - I_0(x_i)]^2$$
(1)

Alkalmazva a Taylor sorfejtést:

$$E_{AC}(\Delta u) \approx \Delta u^T \mathbf{A} \Delta u \tag{2}$$

Ahol az A az x ponthoz tartozó autokorrelációs mátrix:

$$\mathbf{A}(\mathbf{x}) = \mathbf{w} * \begin{bmatrix} I_x^2 & I_x I_y \\ I_x I_y & I_y^2 \end{bmatrix}$$
(3)

Lukovszki Csaba (BME TMIT) Navigációs szolgál

Navigációs szolgáltatások és alkalmazások

2015 16 / 47

Harris detektor

A jellemző jósága:

- Elméletben az A mátrix inverze
- Gyakorlatban minél nagyobb a legkisebb sajátérték, a pont annál jellemzőbb
- Sarkossági mérték (Harris és Stephens eredeti javaslata):

$$R = det(A) - \alpha * trace(A)^2 = \lambda_0 * \lambda_1 - \alpha(\lambda_0 + \lambda_1)$$

$$\alpha = 0.06$$

- $R \approx 0(\lambda_1 \approx \lambda_2)$: egy lapos régiót találtunk
- $R < 0(\lambda_1 \gg 0 vagy \lambda_2 \gg 0)$: egy élet találtunk
- $R > 0(\lambda_1 \gg 0s\lambda_2 \gg 0)$: egy sarkot találtunk
- > Egy küszöböt elérő jellemzőket választjuk ki.

イロト 不得下 イヨト イヨト 二日

Harris detektor Példa

(a) Tesztkép

(b) Élek kiemelése a sajátértékekből

イロト イポト イヨト イヨト

Lukovszki Csaba (BME TMIT) Navigációs szolgáltatások és alkalmazások

E うへの
 2015 18 / 47

SIFT detektor

A SIFT (Scalable Invariant Feature Transform) első olyan jellemző felismerő algoritmus, mely jellemzői invariánsak a

- skálázásra,
- forgatásra,
- fényviszonyok változására.

A megoldás alapja a relatív skála-térhez képest megvalósított mintavételezés.

 Gauss elmosás: dimenziónként alkalmazzuk a szomszédos intenzitásokra a Gauss függvényt.

$$g(x) = \frac{1}{\sqrt{2\pi\sigma}} e^{-x^2/2\sigma^2}$$
(4)

- ► DoG (Difference of Gaussian): Simított képi szomszédok ($\sigma = \sqrt{2}, 2, 2\sqrt{2}...$) különbsége
- Oktávok: képek újra mintavételezése 1.5 pixelközönként (4 szomszédos minta lineáris kombinációja)

2015 19 / 47

SIFT detektor

Lukovszki Csaba (BME TMIT) Navigációs szolgáltatások és alkalmazások

≣▶ ≣ ৩৭৫ 2015 20/47

イロト イポト イヨト イヨト

SIFT detektor

A skála-tér függvények minimum és maximum meghatározása:

- 8 szomszéddal való összehasonlítás
- Amennyiben minimális (maximális) megismételjük a piramis alacsonyabb szintjén
- Ha a szomszédhoz képest alacsonyabb, vagy magasabb, akkor a következő szinten megismételjük

A megtalált jellemző pontokra meghatározzuk a gradiens mértékét és orientációját

$$M_{ij} = \sqrt{(Aij - A_{i+1,j})^2 + (A_{ij} - A_{i,j+1})^2}$$
(5)

$$R_{i,j} = \arctan^2(A_{ij} - A_{i+1,j}, A_{i,j+1} - A_{ij})$$
(6)

Az eredmény az adott skálában meghatározott képi gradiens.

イロト 不得下 イヨト イヨト 二日

SIFT detektor

ábra: SIFT leíró

Lukovszki Csaba (BME TMIT) Navigációs szolgáltatások és alkalmazások

2015 22 / 47

イロト イロト イヨト イヨト 二日

SIFT detektor példa

ábra: SIFT példa

Lukovszki Csaba (BME TMIT)

Navigációs szolgáltatások és alkalmazások

2015 23 / 47

イロト イヨト イヨト イヨト

FAST detektor

A FAST (Features from Accelerated Segment Test) az egyszerűsége és gyorsasága emeli ki a lokális jellemző detektorok kötül.

- 16 pixelből álló kör vizsgálata a vizsgált pixel körül
- Amennyiben legalább 12 egymást követőnek jelentősen (egy küszöbérték felett) eltér az intenzitása a középponttól, akkor a középső pixel kulcspontnak lesz kijelölve.
- Gyorsítási lehetőségek: először csak az 1,9,5,13 sorszámú pontok vizsgálata

2015 24 / 47

ORB detektor

Az ORB (Oriented FAST and Rotated Brief) a FAST továbbfejlesztett változata.

FAST hátrányai:

- Nem veszi figyelembe az orientációt
- Nemcsak sarkot, de éleket is megtalál

Működése:

- FAST futtatása
- Harris alapján sorba rendezés, majd a kevésbé sarokszerűek eldobása

イロト イポト イヨト イヨト

2015

25 / 47

Lukovszki Csaba (BME TMIT) Navigációs szolgáltatások és alkalmazások

Jellemzők detektálása

Követelmények, tulajdonságok

	Corner Detector	Blob Detector	Rotation Invariant	Scale Invariant	Affine Invariant	Repeatability	Localization Accuracy	Robustness	Efficiency
Haris	x		x			+++	+++	++	++
Shi-Tomasi	х		x			+++	+++	++	++
FAST	х		х	х		++	++	++	++++
SIFT		х	х	x	х	+++	++	+++	+
SURF		х	х	х	х	+++	++	++	++
CENSURE		х	x	х	х	+++	++	+++	+++

Lukovszki Csaba (BME TMIT)

Navigációs szolgáltatások és alkalmazások

2015 26 / 47

イロト 不得下 イヨト イヨト 二日

Jellemzők leírása, kinyerése

Feature Description, Extraction

pont és környezetének kinyerése egyszerű, de pontos leíró jelleggel az azonosíthatóság és az összehasonlíthatóság érdekében

- Felmerülő probléma: két kép nem ugyanolyan:
 - Távolság
 - Képrögzítés tulajdonsága (pl. felbontás)
 - Eltérő nézőpont, orientáció
 - Eltérő környezeti hatások (pl. megvilágítás)
 - Zaj
 - **١**...
- A leírónak invariánsnak kell lennie
 - Eltolás
 - Forgatás
 - Skálázás
 - Egyéb affin transzformációk
 - Megvilágítási viszonyok
 - Egyéb zajok

Lukovszki Csaba (BME TMIT)

Navigációs szolgáltatások és alkalmazások

2015 27 / 47

(日) (周) (日) (日) (日)

Jellemzők leírása, kinyerése

- Többféle leíró lehetséges
 - intenzitás
 - Korreláció
 - Bináris leírók
 - Skálázott leírók
 - **١**...
- Legjellemzőbb leírók
 - SSD (Sum of Squared Differences)
 - NCC (Normalized Cross Correlation)
 - ORB (Oriented FAST and Rotated Brief)
 - BRIEF (Binary Robust Independent Elementary Features)
 - BRISK (Binary Robust Invariant Scalable Keypoint)
 - FREAK (Fast Retina Keypoint)
 - SIFT (Scale Invariant Feature Transform)

ヘロト 不得下 不可下 不可下

SIFT leíró

ábra: Szöghisztogram

Minden jellemző ponthoz:

- 4x4 darab hisztogram
- 8-8 értékkel
- Összesen 128 elemű vektor

Lukovszki Csaba (BME TMIT)

Navigációs szolgáltatások és alkalmazások

2015 29 / 47

∃ ⊳

A D N A B N A B N A

BRIEF leíró

- Bináris leíró (256, vagy 128 bites leíró)
- A jellemző körül választott pontpárokra intenzitás vizsgálat

$$au(p;x;y) := f(x) = \left\{egin{array}{ccc} 1 & ext{ha} & p(x) < p(y) \ 0 & ext{egyébként} \end{array}
ight.$$

A BRIEF érzékeny a zajokra \longrightarrow simítás

Lukovszki Csaba (BME TMIT)

Navigációs szolgáltatások és alkalmazások

2015 30 / 47

A D N A B N A B N A

(7

ORB leíró

- Az ORB a BRIEF továbbfejlesztett változata
 - Forgatásra invariáns leíró készítése
- Megoldás
 - A vizsgálatot 12 fokonként elvégezzük és lementjük
 - A hatékony működéshez olyan detektor szükséges, ami visszaadja az orientációt is

BRISK leíró

- Az ORB és a BRIEF továbbfejlesztett változata
 - Forgatás invariancia általánosítása
- Megoldás
 - Hosszú párok a sablonból: orientáció automatikus meghatározása
 - Rövid párok a sablonból: a jellemző leírása

Lukovszki Csaba (BME TMIT)

Navigációs szolgáltatások és alkalmazások

2015 32 / 47

Társítás (Feature Matching)

Két kép jellemző pontjai között a párok megtalálása az adott jellemző leíró alapján.

- Metrika definiálása
- A társítás működése
 - jellemző leírók kinyerése
 - leírók párosítása adott metrika alapján
 - hibás párok szűrése

イロト イポト イヨト イヨト

Brute-force párosítás

- Távolság két leíró között
 - Valós vektor alapján: Többdimenziós térben távolság
 - Bináris leíró esetében: Hamming távolság
- Működés
 - Minden az egyik képen minden jellemzőt a másik kép minden jellemzőjével, majd az lesz pár ahol a legnagyobb

イロト イポト イヨト イヨト

2015

34 / 47

- Egyirányú
- Kölcsönös

FLANN párosítás

Fast Libtary for Approximate Nearest Neighbours

Sok dimenziós térben való gyors keresés

- Lehetőségek
 - Hierarchikus K-közép fa, prioritásos keresés
 - Többszörös sztochasztikus K-d fa
- Nincs egyértelműen jó megoldás
- ► FLANN:
 - a jellemző vektorok egy részéből megállapítjuk a használandó algoritmust
 - ► a jellemzők párosítását a kiválasztott algoritmussal végezzük

2015 35 / 47

- 김씨가 귀구가 귀구가 구구

Párok szűrése

- Leíró távolságok aránya alapján, NDDR (Nearest Neighbour Distance Ratio)
 - A két legközelebbi szomszéd választása
 - Akkor pár, amennyiben a távolságokra igaz $\frac{d_1}{d_2} < \lambda$.
- Geometria párszűrés
 - A két kép geometriai összefüggése alapján egyáltalán lehetnek-e párok.
- Elmozdulás alapján
 - Időben közeli képek esetében a párok közötti távolság maximalizálása.
- Homográfia alapján
- Epipoláris megkötés alapján

- 4 週 ト 4 ヨ ト 4 ヨ ト

Jellemző pontok nyomonkövetése

Egymás utáni képek esetében

- Relatív kis elmozdulás
- A környezet jelentéktelen megváltozása
- Hatékonyság növelése
 - Jellemző képpontok keresése
 - Párosítás
 - Geometriai megkötések kiaknázása
- Megoldások
 - Optical-flow (Optikai áramlás)
 - Lucas-Canade módszer

- 4 同 6 4 日 6 4 日 6

2015

37 / 47

A projektív geometria alapjai

Az
 n dimenziós projektív geometria n dimenziós pontoka
tn+1 dimenzióban ír le.

- Pont leírása
 - $\pi: x_3 = 1$ sík
 - ► Tetszőleges x pont: az *O* és *x* pontokon átmenő egyenes egyenlete:

$$ax + by + c = 0$$

Lukovszki Csaba (BME TMIT)

Navigációs szolgáltatások és alkalmazások

2015 38 / 47

Pont homogén koordinátái

Egyenes leírása:

$$(a, b, c) \leftrightarrow (ka, kb, kc), k \neq 0$$

Pont az egyenesen:

$$\begin{bmatrix} x & y & 1 \end{bmatrix} \begin{bmatrix} a \\ b \\ c \end{bmatrix} = 0$$

A pont homogén koordinátás alakja:

Lukovszki Csaba (BME TMIT) Navigác

Navigációs szolgáltatások és alkalmazások

Projektív geometria tulajdonságai

- Két egyenes I, I' metszéspontja
 - $\mathbf{x} = I \times I'$, hiszen
 - $\bullet \ l(l \times l') = l'(l \times l') = 0$
- Két párhuzamos egyenes
 - I: (a, b, c), I': (a, b, c')
 - Metszéspontjuk: (b, -a, 0)
 - A párhuzamosak a végtelenben találkoznak!

- < 同 > < 回 > < 回 >

Sík projektív transzformációja

A projektív transzformáció (homográfia) egyeneseket egyenesekbe visz át.

$$\mathbf{x}' = h(\mathbf{x}) = \mathbf{H}\mathbf{x}$$

A középpontos vetítés homográfiát valósít meg.

Lukovszki Csaba (BME TMIT) Navigációs szolgáltatások és alkalmazások

2015 41 / 47

A sík projektív geometriája

Síkbéli pont homogén koordinátái

▶
$$\mathbf{x} = (x, y) \in \mathbb{R}^2 \rightarrow \mathbf{X} = (X_1, X_2, X_3) \in \mathbb{P}^2$$

▶ $x = \frac{X_1}{X_3}, y = \frac{X_2}{X_3}$

Transzformációk

• Azonossági transzformáció, 3 szabadsági fok, $\begin{bmatrix} \mathbf{R} & \mathbf{t} \\ \mathbf{0}^T & 1 \end{bmatrix}$

- Hasonlósági, 4 szabadsági fok, [sR t 0^T 1
]

 Affin, 6 szabadsági fok, [A t 0^T 1
]

• Projektív transzformáció, 8 szabadsági fok, $\begin{bmatrix} A & t \\ v^T & v \end{bmatrix}$

Lukovszki Csaba (BME TMIT) Navigációs szolgáltatások és alkalmazások - 4 週 ト - 4 三 ト - 4 三 ト

A tér projektív geometriája

Térbeli pont homogén koordinátái

▶
$$\mathbf{x} = (x, y, z) \in \mathbb{R}^3 \to \mathbf{X} = (X_1, X_2, X_3, X_4) \in \mathbb{P}^3$$

▶ $x = \frac{X_1}{X_4}, y = \frac{X_2}{X_4}, z = \frac{X_3}{X_4}$

Transzformációk

• Azonossági transzformáció, 6 szabadsági fok, $\begin{bmatrix} \mathbf{R} & \mathbf{t} \\ \mathbf{0}^T & 1 \end{bmatrix}$

- Affin, 12 szabadsági fok, $\begin{bmatrix} A & t \\ 0^T & 1 \end{bmatrix}$

• Projektív transzformáció, 15 szabadsági fok, $\begin{bmatrix} A & t \\ v^T & v \end{bmatrix}$

Lukovszki Csaba (BME TMIT) Navigációs szolgáltatások és alkalmazások

イロト イポト イヨト イヨト

Kamera modell

- Napjainkban elterjedt egyszerű CCD kamera modellje: Lyukkamera
 - CCD: Vetítései sík
 - Kamera lencse: egyszerű pont
- Középpontos vetítés

Lukovszki Csaba (BME TMIT)

Navigációs szolgáltatások és alkalmazások

2015 44 / 47

イロト イポト イヨト イヨト

Középpontos vetítés

A kamera által megvalósított leképzés (projekció):

 $\mathbf{x} = \mathbf{P}\mathbf{X}$

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

H 5

Kamera projekciós mátrix

- ► A projekció P³P² leképzést valósít meg
- A projekciós mátrix (P) egy 3 × 4 méretű

 $\mathsf{P}=\mathsf{K}\mathsf{R}\left[\mathsf{I}\right]-\mathsf{C}]$

(8)

46 / 47

イロト イポト イヨト イヨト

2015

- C: Kamera középpontjának helye (transzláció)
- R: Kamera helyzete (rotáció)
- K: Kamera kalibrációs mátrix

Lukovszki Csaba (BME TMIT) Navigációs szolgáltatások és alkalmazások

Kamera kalibrációs mátrix

$$\mathbf{K} = \begin{bmatrix} f\alpha_x & s & x_0 \\ 0 & f\alpha_y & y_0 \\ 0 & 0 & 1 \end{bmatrix}$$

f: fókusztávolság

A kamera középpontjának és a vetítő sík távolsága

• α_x, α_y : pixel arány

• A kamera pixelek oldalának aránya $\frac{\alpha_y}{\alpha_z}$

- x₀, y₀: Főpont eltolás
 - A pixel koordináta-rendszer origója nem a kép középpontjához van rögzítve.

イロト 不得下 イヨト イヨト 二日

2015

47 / 47

- s: ferdeség
 - A pixelek nem feltétlenül derékszögűek

Lukovszki Csaba (BME TMIT) Navigációs szolgáltatások és alkalmazások