Telecommunication Networks and Services

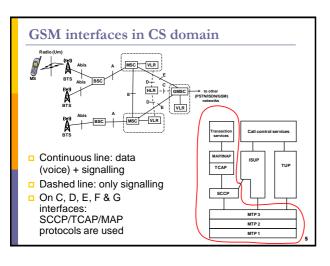
Signalling 2 (GSM)

Gusztáv Adamis BME TMIT 2015

Content

- I. IntroductionVoice digitalisation
- 2. Access to IP networks through telecommunication and cableTV networks
- 3. Switching
- □ 4. Mobile networks
- 5. Signalling

Signalling


6. Signalling

- 6.1 Overview
- 6.2 Subscriber signalling
- 6.3 Inter-switch signalling (SS7)
- 6.4 GSM signalling

GSM signalling

- Signalling of GSM is based on the ISDN signalling systems
 SS7/DSS1
- But, because of mobility, roaming, radio access
 - a lot of new problems to be solved, e.g.:
 Authentication of subscribers, encryption of signals/voice transmission (ciphering)
 - Management of query/response transactions
 e.g.: data base query between the MSC and HLR to learn the location of a called mobile subscriber
 - Establishment of a signalling connection between different signalling networks
 - in case of roaming

SCCP

- SCCP: Signalling Connection Control Part
- Main problem: 14 bits long Point Codes used in MTP-3 are not suitable for every SP to have a globally unique address
 - not a problem in ISDN, because there trunk lines are to be controlled, and two ends of every trunk line belong always to the same network,
 - ISDN: if in a call more than one trunks are used: several, independent signalling connections
 - a signalling connection may be:
 - international
 - in between different operators of the same country (national interconnecting)
 inside the network of an operator (national for historical reasons)
 - But in GSM in case of roaming there is a need of a direct signal exchange between network elements of different operators, e.g.:
 - SMSC MSC
 - HLR MSC (VLR)

SCCP

- Solution: Global Titles (global, not SS7-related addresses)
 - Most typically: telephone number
 - A telephone number is assigned to every network element, that may be reached from an other network
- SCCP translates between the global (tel. number) and local (MTP-3 SPC) addresses
- 3 different services (SCCP "classes"):
 - connectionless, every signal sent independently (maybe on different route)
 - connectionless, every signal between two particular network elements sent always on the same route (sequence of signals is kept)
 - connection-oriented: connection establishment, usage, clearing phases
 - used at A interface in call control

ТСАР

- TCAP: Transaction Capabilities Application Part
 - SCCP provides only the transparent signal transfer
- TCAP supports the query-response data base transactions
 - e.g.: matches the response with the query
 - a transaction may contain several operations
 management of operations within a transaction

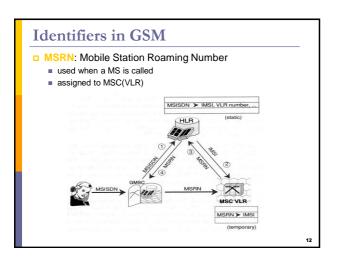
MAP/INAP

- DMAP: Mobile Application Part
- INAP: Intelligent Network Application Part
 - e.g.: green/blue or premium rate number translation
- MAP: management of the communication between the network elements at C, D, E, F, G interfaces of GSM

Identifiers in GSM

- MSISDN: Mobile Station ISDN Number
 - telephony number
 - unique worldwide
 - MSISDN = Country Code (Hungary: 36) + Network Identifier ("area code") (Hungary:20/30/70) + Subscriber Number
- IMSI: International Mobile Subscriber Identity,
 - in GSM network this identifies the subscribers in data bases (HLR, VLR - index)
 - assigned to SIM cards
 - unique worldwide
 - IMSI = Mobile Country Code (Hungary: 216) + Mobile Network Code (Hungary:01/30/70) + Mobile Subscriber Identifier (10 digits)
 - at operator change: MSISDN may be kept (number portability) but SIM card and so the IMSI must be changed

10


11

Identifiers in GSM

IMEI: International Mobile Equipment Identity

- identifier of the mobile terminal
- unique worldwide
- IME1 = <equipment type+producer id> (8 digits) + <serial number> (6 digits) + <control digit> (1 digit) (+<software version id> (1 digit))
- To query: *#06#

 - works on every GSM terminal written under the battery, too
 - if they are different (or the latter is not present): the mobile is probably stolen!
 - exception: the SW version number is not always displayed by *#06# or it is not written under the battery

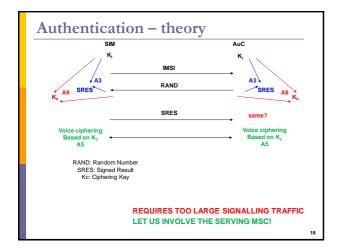
User Confidentiality

Authentication

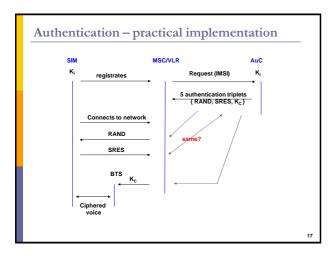
- Verification of the identity of the subscriber
- Ciphering
 - Encryption of user speech and signal transmission in the Air interface
- IMEI check
 - verification of the Mobile Equipment by checking the validity of the International Mobile Equipment Identity (IMEI)
- User Confidentiality
 - Tariff structure
 - called: right to hide location, not to be discovered even implicitly
 caller: to know in advance how expensive the call will be
 - Avoidance of the broadcast of user's IMSI in the air interface TMSI

13

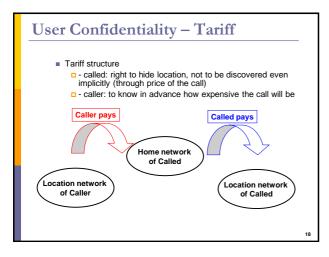
14


15

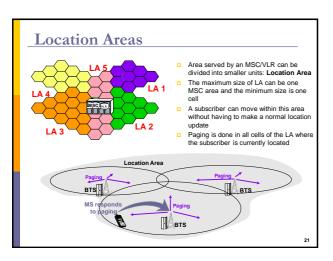
Authentication


- Problem: On the Radio Interface anyone can call in the name of anyone else by using a public identifier
 And the cheated pays...
- Therefore the network must check the identity authentication
- Private identifier needed
- But this must NEVER be transmitted through the radio interface
- □ But, then how ????

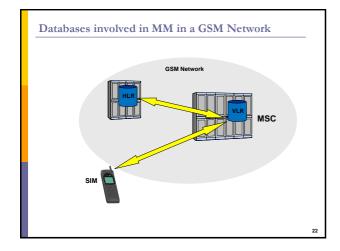
Authentication


- Producer: Generates a 128 (in UMTS: 256) bit long private key (long enough) to each SIM card
 - K_i Individual Subscriber Key
 - Off-line presents (paper, CD, ...) to the service provider buying the SIM
 - Stores in Authentication Centre (AuC):
 IMSI K_i assignment

Usage of TMSI instead of IMSI

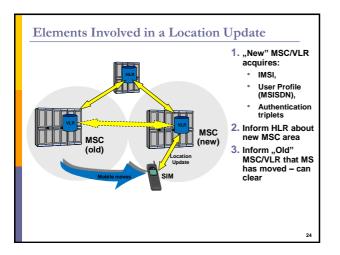

- Do not send "sensitive" identifier through radio IF
- At very first connection (LU): IMSI
- MSC gives a "random" identifier (this is the TMSI)
- At next connection use TMSI instead of IMSI
- But how can the MSC whether the TMSI was assigned by itself or by an other MSC?
- MS sends not only the TMSI, but the LAI where it got the TMSI

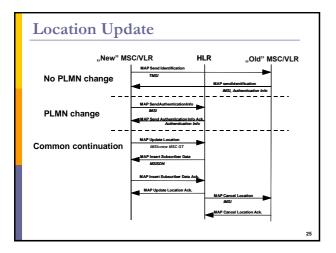
19


If LAI not own, MSC asks the "old" MSC

Mobility Management (MM)

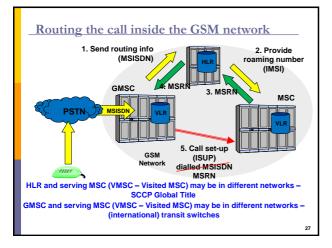
- The network must know the location of a MS to be able to connect a call, or deliver an SMS to it
 - If the world were just one area
 - No need for location management
 - But Paging in every cell of the world 🐵
 - Divide the world to smaller areas to Page an MS only in a limited part of the world
 - Location Area LA
 - Often LA = Area served by an MSC, but at heavy traffic areas it is divided logically into more LAs
 - But then the network must keep track the movement of MSs
 - · Additional signalling need
 - · Additional network elements, processes
 - Still worth




Location update

- The Mobile Station monitors the information broadcast by the network (BTS).
- The Mobile Station stores the current location area identity (LAI) in the SIM card.
- The Mobile Station continues to monitor the broadcast information.
- If the location area identity being broadcast by the network is other than the one stored in SIM, the Mobile Station starts the location update (LU) procedure.

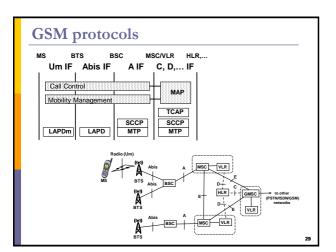
23



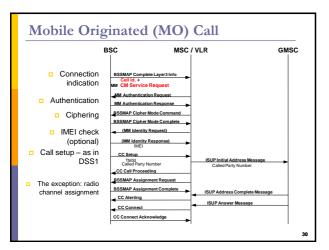


LU variants

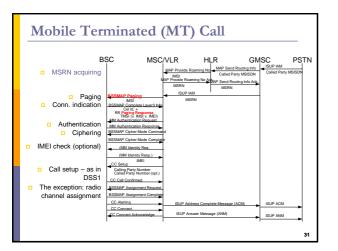
- "Normal" (Generic LU)
- Periodic
- Switch on (IMSI Attach)
- Switch off (IMSI Detach)



GSM protocols


- Previously discussed: Protocos among MSC, VLR, HLR, EIR (C, D, E, F, G interfaces): SCCP/TCAP/MAP
- Let us have a look at the protocols between the MSC and MS (A, Abis, Um (radio) interfaces) -- simplified
 - Lower layers:
 - A interface: MTP + SCCP
 - Abis interface: LAPD (old friend...)
 - Radio (Um) interface: LAPDm: modified LAPD (optimized for radio channels e.g. shorter messages, etc.)

28


- Two special protocols above them:
 - MM Mobility Management CC – Call Control (~DSS1)

Short Message Service

- Signalling service, no voice lines involved
- Datagram service
 - Not requiring the end-to-end establishment of a traffic path between sender and receiver
 - Sender sends SM to SMSC of its home PLMN
 - SMSC delivers it to receiver
- Not guaranteed service
- Asymmetric: Mobile Originating Short Message transmission is considered as a different service from Mobile Terminating Short Message transmission

22

