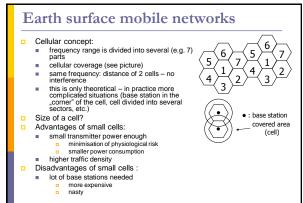
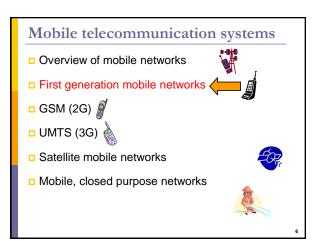
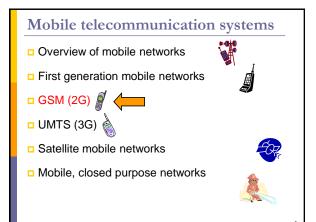

Telecommunication Networks and Services


Mobile networks


Gusztáv Adamis BME TMIT 2015



1G systems

- **IG:** first generation mobile telecommunication systems
 - end of 1970s / beginning of 1980s
 - Analogue systems
 - Lot of not compatible systems
 - E.g.: NMT (Nordic Mobile Telephone System)
 - Scandinavia since 1981
 - In Hungary 1990-2003. (30th June) (Westel 0660)
 - Typically around 450 MHz frequency
 - Relatively large cells, with 30-50 km of diameter
 - Poor voice transmission quality, few services
 - More examples for 1G systems:
 - USA: Advanced Mobile Phone Service (AMPS),
 - GB: Total Access Communication System (TACS)
 - Germany: B-Network (C450)

GSM

World-wide spread, because:

- research-development in proper time, quickly (4 years)
- open, improvable standard (ETSI)
 in Europe uniform from the beginning (not in USA ®)
 global system (roaming)
- concept of SIM card is attractive (data of subscribers equipment-independent)

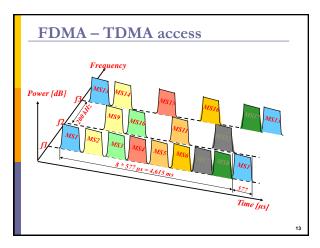
GSM

- only the caller pays (in USA both parties)
- pre-paid (later from phase 2) 900 MHz: countrywide coverage possible
 Incremental development:
- phase 1 (1991)
 - voice transmission, SIM concept, SMS, roaming, encryption of voice, 9.6 kbps data transmission
- phase 2 (1995)
 backward compatibility, calling number presentation, call hold, call waiting, conference call, half rate (speed) codec, etc.
- phase 2+ (1998) mainly improvement in data transmission (HSCSD, EDGE, GPRS), push-to-talk, virtual private networks, improvement of SIM, enhanced codecs, etc.

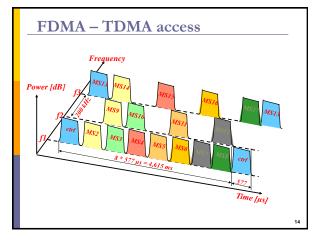
GSM

- Digital transmission:
 - voice codec in terminal
 - integrated services network: voice + data transmission
- Radiation output: max. 2W, adaptive: the terminal transmits with the minimally necessary power
 - save the battery
 - minimisation of physiological risk
 - not to disturb other cells
- Diameter of cells: 0,5 35 km
 - depends on frequency, traffic, propagation
 - design decision

11


GSM

- Radio access: FDMA+TDMA (Frequency/Time Division Multiple Access)
- GSM 900 (Primary-GSM, P-GSM)
 mobile station (uplink): 890-915 MHz,
 base station (downlink) 935-960 MHz
 - in this frequency range the smaller frequency suffers smaller attenuation, so it requires less power -> mobiles have the smaller frequency band
 1 band = 25 MHz, 1 carrier = 200 kHz: 124 carriers (FDMA)


 - shared by every service provider
 in Hungary: appr. 30 frequencies/service provider in this band
 8 time slots/carrier (TDMA)

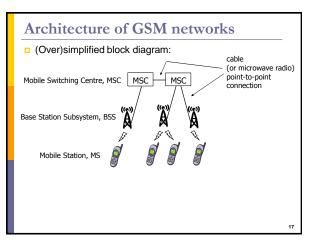
 - O time stockation (Totation)
 30°8/10 ≈ 24 channels / cell
 10: typically ≈ 10 different frequencies used in cells (more realistic than 7 as we could see on slide 4)
 with Half Rate encoding: twice as much

- max: 35 km cell diameter: 900 MHz waves follow the surface of the Earth more or less =>
 countrywide coverage

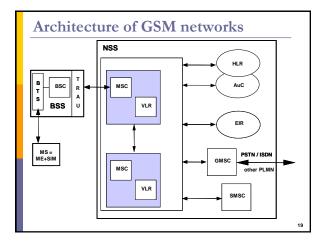
GSM

GSM 1800

- mobile: 1710-1785 MHz, base station: 1805-1880 MHz
- 1 band = 75 MHz (three times larger capacity)
- BUT: worse wave propagation
 - propagates straight
 - attenuates more quickly
- not (so...) suitable for countrywide coverage, only for small cells (with high traffic)
- Several other: (not to learn, but interesting)
 - Extended-GSM 900, E-GSM: +10 MHz/direction: +50 carriers
 - R-GSM: Railways GSM: 876-880/921-925 MHz
 - GSM 1900: 1850-1910/1930-1990 MHz (USA)
 - GSM 850: 824-849/869-894 MHz (USA)
- Dual band equipments: automatically select/change frequency range
 - recently three band (900/1800/1900) and four band equipments (850/900/1800/1900)


GSM handover/handoff

GSM: circuit switching


When the mobile station enters an other cell: handover (handoff)

- connection continuous
- it can theoretically happen:
 - by control of the mobile station: measures, when the signal of the neighbouring cell is stronger
 - by control of the network: network decides on the signal strength and/or other pieces of info (e.g. load of the cell)
 - by control of the network, with the help of mobile station: network asks the mobile station to send signal strength info, but the decision is made by the network – this is in GSM
 - this way the network can enter the mobile station later if the "new" cell is overloaded

16

Base Station Subsystem (BSS)

Base Transciever Station (BTS)

One or more elementary transmitter/receiver

- Transcoder/Rate Adapter Unit, TRAU
- □ FR, HR, EFR codec ⇔ 64 kbps PCM
 - Full Rate (13 kbps), Half Rate (5.6 kbps), Enhanced Full Rate (12.2 kbps, but better than FR)
- $\hfill\square$ Rate adaptation also at data transmission: 14.4 kbps \Leftrightarrow 64 kbps

Base Station Controller (BSC)

- Controls one or more BTSs
- Radio channel assignment
- Handover control

Network and Switching Subsystem

- Mobile Switching Centre (MSC)
 - a digital switch with mobile specific extensions
 - authentication
 - location management (VLR) inter-BSC handover
 - roaming
- Visitor Location Register (VLR)
 - Built-in the MSC
 - Stores temporarily some parts of the HLR info about the currently served mobile stations
- Home Location Register (HLR)
 - subscriber data, subscription information (services), current location one HLR in every network
- Authentication Centre (AuC)

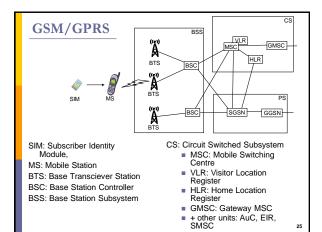
 - Typically integrated with HLR
 It verifies that the subscriber is the same in reality as he is proposed to be

21

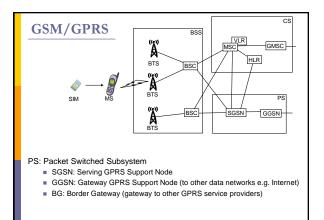
GSM services - 1

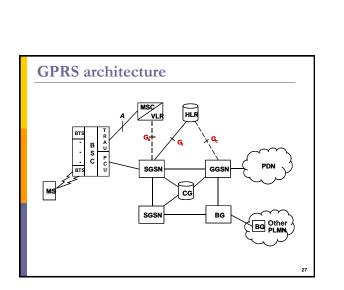
- Voice transmission
 - speed of codec 13 kbps (later: 5.6 kbps)
 - compromise: poorer quality of voice, but higher utilisation of frequency
- SMS (Short Message Service)
 max. 160 character (1 character = 7 bits)
- Data transmission
 - originally 9.6 kbps, later 14.4 kbps
- HSCSD (High Speed Circuit Switched Data)
 - enhancement of data transmission: unites more 14.4 kbps channels
 - max. 8 theoretically
 - max. 4 practically, (to fit into one 64 kbps channel trained encode 42 2, 57 0 kbps
 - typical speed: 43.2, 57.6 kbps
 circuit switched, 4 channels simultaneously: EXPENSIVE!

GSM services – 2


- EMS (Enhanced Messaging Service)
 - simple pictures
- MMS (Multimedia Messaging Service)
 - multimedia message: picture, text, voice togethersince 2002
- WAP (Wireless Application Protocol)
 simplified Web-like service
- Location Based Services
 - relatively imprecise (cell level!),
 - but it can be told e.g., where is a restaurant nearby

23


22


GSM/GPRS

- GPRS (General Packet Radio Service)
 - since 2001
 - packet switched data transmission, extension of GSM
 - advantage:
 - better utilisation of network, frequency
 - payment on basis of transmitted data amount (kB), not on basis of duration of the connection
 - speed
 - originally max. 56 kbps
 - theoretically max.: 8 x 20 = 160 kbps
 - typically 60-80 kbps downlink, 20-40 kbps uplink
 - fewer channels used in uplink direction
 - usage:
 - WAP
 - Internet access
 - requires significant extensions in the network (next slide)

GSM/EDGE

- EDGE (Enhanced Data Rate for Global/GSM Evolution – no comment...)
 - since 2003
 - can be used for speeding up the
 - circuit-switched data transmission: Enhanced Circuit Switched Data (ECSD)
 - packet-switched data transmission: Enhanced GPRS (EGPRS)
 improved modulation technology
 - originally 1 bit/symbol (Gaussian minimum shift keying, GMSK)
 - EDGE: 8PSK, 3 bit/symbol
 - three times larger data transmission speed
 - but worse signal-to-noise ratio
 - can only be used close to the base station, not in the whole cell
 - requires only a limited extensions in the network: EDGE card into the base station + BSC software upgrade