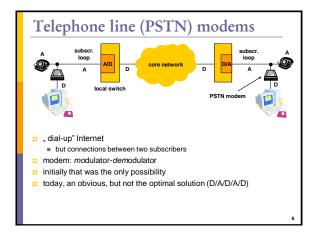
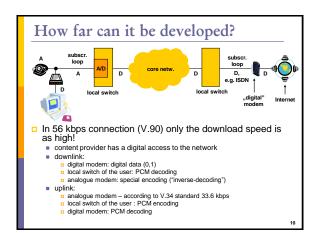

Telecommunication Networks and Services Access to IP networks through telecommunication and cable TV networks Gusztáv Adamis BME TMIT



Acoustic modems

- Connection establishment, release by hand (dialling, putting the receiver down)
- □ 300 or 1200 bps (ITU-T V.21, V.22)
 - Interesting: They still can interwork with some PSTN modem types
- □ 1970s, early 1980s
- □ Main reason: no direct access to the network
 - forbidden, only the Post-owned equipments were legal
 - not only in Hungary, in Western Eu, USA
- □ Forgotten history...


PC modems □ Internal (ISA, PCI bus) External with serial connection (serial port) □ External with USB connection Compact Flash connection □ External with PCMCIA connection ■ to connect laptops

Modem history - FYI

- □ First modem in 1950s
 - Used by US Air Force to send military data through telephone lines
 - First commercial modem Bell 103 (1962)
 - 300 bps full duplex transmission
 ITU-T V.21
- Newer standards
 - ITU-T V.22 600 or 1200 bps (PSK, QPSK) (1980)
 - ITU-T V.22bis 1200 or 2400 bps (QPSK, QAM-16) (1984)
 - ITU-T V.32 9600 bps (QAM) (1984)
 - ITU-T V.32bis 14.4 Kbps (1991)
 - ITU-T V.34 33.6 Kbps (1998)
 - ITU-T V.90 56.6 Kbps downlink, 33.6 Kbps uplink (1998)
 - ITU-T V.92 56.6 Kbps downlink, 48 Kbps uplink (2000)
- Standards can be downloaded free of charge:
 - http://www.itu.int/ITU-T/publications/recs.html

How far can it be developed?

- Shannon's law:
 - C = B * log₂ (1 + S/N)
 - □ C bitspeed (bps)
 - B channel bandwidth (Hz)
 - □ S/N signal to noise ratio
- □ Today the core network is digital
 - Upper bound: PCM encoding 64 kbps
 - Because of the quantisation noise of the A/D and D/A conversion the practical limit is appr. 33 kbps
 - In 56 kbps connection (V.90) only the download speed is as high!

ISDN Internet access

- □ 2B+D: 128 kbps max.
- □ Popular around 2000
- □ Not attractive since the appearing of ADSL
 - Slow: 128 kbps (2 B channels), with a parallel tel. connection: only 64 kbps
 - Expensive: chargig proportional to time
 - But in contrary to ADSL can be accessed everywhere

Overview Telephone line modems Acoustic modems PSTN modems ISDN modems ISDN modems Internet access through cable TV

ADSL

- □ ADSL = Asymmetric Digital Subscriber Line,
- Goal: maximize the utilisation of the subscriber loop
 - subscriber loops are the top values in telecommunications networks!!
 - "last critical mile"
- □ Telephone connection (analogue or ISDN) and high speed data transfer at the same time

Functioning of ADSL

Theory: FDM:

More precisely:

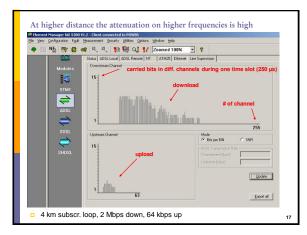
0-4 kHz - voice

(4-25 kHz - upload band

200 kHz - 1.1 MHz - download band

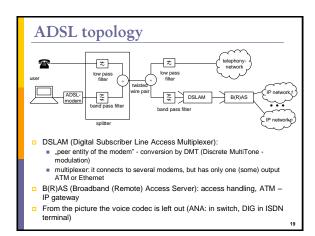
But it depends on the concrete situation!

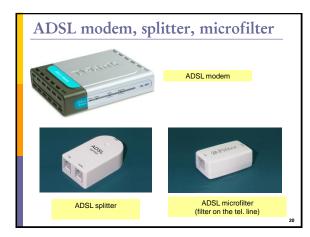
Different in analogue/ISDN tel. subscription


upload/download may be overlapped

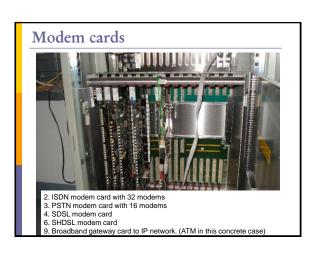
depends on noise

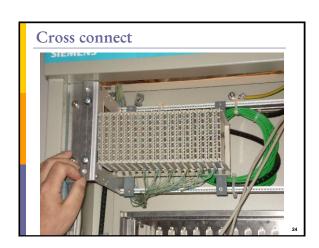
ADSL modulation


- □ DMT Discrete Multitone Modulation (ITU-T: G.992.1)
 - 1.1 MHz frequency range
 - 256 channels, 4,3125 kHz each
 - □ 0. channel POTS (voice)
 - □ 1-5. channels gap (empty)
 - to reduce the interference between voice and data transmission
 - □ from the rest 250 channels: 1-1 to indicate if there is an upload/download traffic, or not
 - the rest is for user traffic
 - if the transfer is poor on a channel that channel is not used
 - at higher distance the attenuation on higher frequencies is high

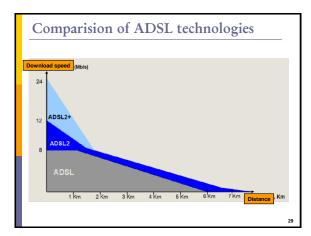

16

Speed of ADSL Asymmetric: intentionally: usually we download more than upload but not always (e.g. peer-to-peer, videotelephony) upload: 16 kbps -- 1 Mbps download: 0,1 -- 8 Mbps depends on distance (best: under 2,5 km, poor: more than 5 km) service providers may restrict the speed now, in Hungary (up/down): 128k/1M, ..., 512k/8M

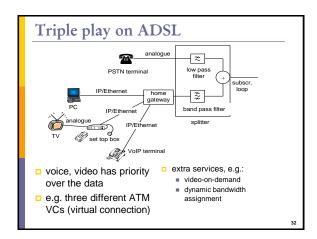

18



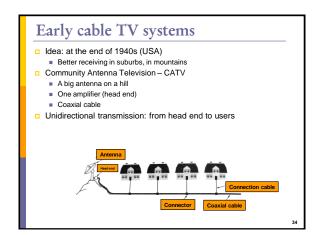
Splitters ISDN, PSTN separatelyl


DSLAM

ADSL2/2+

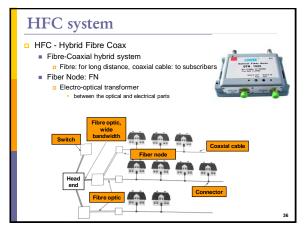

- □ ADSL2 (G.992.3)
 - more efficient modulation, download max. 8-12 Mbps
 - may be approx. by 200 m longer
 - may use the voice channel temporarily
 - power saving: detects, if there is traffic or not
- □ ADSL2+ (G.992.5)
 - max. frequency 2.2 MHz
 - voice, upload frequencies same
 - max. download bandwidth 16-20 Mbps
 - within 1.5 km range

28



xDSL Idea - same: better utilisation of the subscriber loop SHDSL: Symmetric High-speed DSL (G.991.2): max. 2.3 Mbps in both directions max. 3 km no voice transmission relatively new DSL version (2001) typically for business applications VDSL - Very high rate Digital Subscriber Line (G.993.1) 13 Mbps - 55 Mbps (down), 1-3 Mbps (up) or 26-26 Mbps symmetrically 300 - 1500 m twisted copper wire pair, then fiber optic VDSL2 (G.993.2) 100 Mbps in both directions frequency range: 30 MHz DSLAM is compatible with ADSL modems xDSL: all together

Triple Play Intriple Play marketing name for an IP service including the following 3 services: Internet min. 5 Mbps Television typically min. 3 TV channels in parallel / household Telephony Voice over IP (VoIP) A business model, not a technical standard Quad(ruple) Play Triple Pay + wireless access



Development of cable TV

- □ 1970: several thousands independent systems (USA)
- □ 1974: HBO starts, only on cable
 - Several new cable channels news, sport, cooking, etc.
- Large companies start to buy the existing cable networks up, new cables are laid down
 - Cables among towns to unite sytems
 - Later: inter-town cables were replaced by fibre optic

35

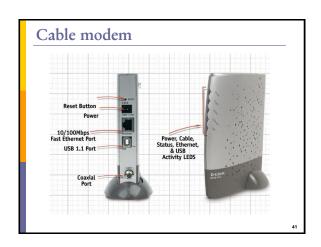
Internet on cable TV

- Cable service providers started to introduce new services:
 - Internet access
 - Telephony (VoIP)
- Network must have been changed
 - Unidirectional amplifiers -> bidirectional
 - Improve the head end
 - gain "Stupid" amplifier -> intelligent computer system
 - □ Cable-Modem Termination System (CMTS)

37

Internet on cable TV

- Coaxial cable: shared resource: several users use in parallel
 - In telephone networks: every user has a dedicated wire pair (subscriber loop)
 - Not necessary for BROADCASTing TV programs
 - Internet: competition among users for the medium
 - But: coaxial cable has a (much) wider bandwidth than a copper wire pair
- Solution: divide a long cable into several shorter sections
 - All of them are directly connected to a fiber node
 - □ If there are not too many users on a section the traffic may be managed
 - □ Today: typically 500-2000 subscribers on a section
 - More and smaller sections as the number of subscribers and traffic grow
 - The bandwidth between the head end and fiber node is very high


Spectrum allocation

- Cable system not only for Internet access
 - More TV subscribers than Internet subscribers
 - NRA regulations : TV service mandatory
- Distribution of frequencies between TV and Internet
- Europe
 - TV channels above 65 MHz
 - 8 MHz wide channels
 - Because of higher resolution of PAL és SECAM systems
 (PAL Phase Alternating Line)
 (SECAM Séquentiel Couleur à Mémoire)

 - Resolution: 768 x 576, 25 fps
- USA, Canada
 - FM radio: 88 108 MHz
 - Cable TV channels: 54 550 MHz
 - □ 6 MHz wide channels
 - NTSC National Television System Committee
 - Resolution: 720 x 480, 29.97 fps

Cable modem

- □ 2 interfaces one to PC and one to cable network
 - Between modem and PC: 10 Mbps Ethernet, sometimes USB
 - In future: possibly internal modems
- □ Initially: every provider had a special modern type that could have been installed only by technicians (expensive modems!)
 - Need of an open standard
 - Competition on the market of the modems
 - Prices decreased
 - □ Inspire the spreading of the service
 - □ If user installs the modem no charge for the installation
 - □ Good for the users ⑤, not good for the cable companies ⑤ ⑤
- CableLabs
 - Association of the largest cable companies
 - DOCSIS standard
 - Data Over Cable Service Interface Specification
 - □ EuroDOCSIS European version

Secure communication

- Cable is a shared medium
 - $\,\blacksquare\,$ Anybody can look in the traffic goes by $\ensuremath{\mathfrak{S}}$
- □ Traffic must be encrypted in both directions
 - Common encryption key in both directions

Cable vs. DSL

	ADSL	Cable
medium	twisted wire pair	coaxial cable
bandwidth	more o	less the same
access (to the first router)	dedicated	shared
range	only near to switch	anywhere on the area of a cable tv
security	physical separation	encryption
more ISP	frequently, regulation supports	typically one

- Cable now cheaper & faster
- □ Future: fibre optic cables even to the home
 - FTTC/FTTCab: Fiber to the Curb/Cabinet, VDSL(2)FTTH: Fiber to the Home

 - Details later